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This paper presents a novel methodology that combines polynomial chaos expansion and slime mould
algorithm for multi-parameter identification of concrete dams. This methodology not only incorporates
the merits of low computational cost in the polynomial chaos expansion and fast convergence of slime
mould algorithm, but also considers the priori uncertainty in the input parameters by introducing statis-
tical probability theory. By considering two examples with different complexity, this paper verifies the
effectiveness of the proposed method with a univariate simply supported beam model, followed by a
complex multivariate dam model to demonstrate its practicability in real engineering problems. In addi-
tion, parameter sensitivity analysis of the dam model is conducted at an extremely low cost by polyno-
mial chaos expansion based on Sobol’ indices. Furthermore, the conventional parameter identification
methods based on optimization methods directly combined with the finite element model are employed
for comparison, highlighting two distinct advantages of the proposed method: (i) the proposed method
improves the computational efficiency by nearly 52 times while ensuring a high accuracy, and (ii) the
classical non-population optimization algorithm, Bayesian optimization, is used for comparison, reveal-
ing the outstanding performance of slime mould algorithm in terms of convergence speed and robust-
ness. The application of the proposed algorithm is not only limited to dams, but also it can be
extended to any structure.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Water and electricity are essential resources for human sur-
vival. The construction of large-scale water and hydroelectric
infrastructures not only alleviates the uneven spatial distribution
of natural resources to a large extent, but also contributes power-
fully to the country’s Gross Domestic Product (GDP). As a major
component of the hydroelectric infrastructure, dams are responsi-
ble for power generation, flood control and irrigation. In the event
of a dam failure, extensive losses may take place, so it is of great
importance to continuously assess the safety of dams.

Typically, the foremost task of structural safety assessment is to
establish a high-precision numerical model that can adequately
characterize the physical properties of the structure. However,
the accuracy of the numerical model depends on various factors,
among which material uncertainty is one of the key factors affect-
ing the modelling accuracy. Therefore, identifying the unknown
material parameters in the numerical model to reduce material
uncertainty is a crucial step in the structural safety assessment.
In addition, there are numerical methods, such as finite element
method [1], scaled boundary element methods [2] and meshless
methods [3], etc. For engineering problems, the most well-known
choice is the finite element method.

The traditional parameters identification methods are primarily
based on analytical or numerical displacement back analysis
[4,5,6]. These methods were developed at a stage when simulation
software was in its infancy, and therefore mainly aimed at the
back-analysis of simple structures. They often require constantly
changing the material parameters in the finite element model
and then adopting a first-order optimal approach, such as the gra-
dient descent method, to minimize the discrepancy between
numerical simulations and field measurements [7]. However,
parameter identification is typically a high-dimensional, multi-
peak optimization problem, and it is extremely easy to fall into

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2023.107018&domain=pdf
https://doi.org/10.1016/j.compstruc.2023.107018
mailto:20110018@hhu.edu.cn
mailto:magd.abdelwahab@ugent.be
mailto:magd.abdelwahab@ugent.be
https://doi.org/10.1016/j.compstruc.2023.107018
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


L. YiFei, C. MaoSen, H.Tran-Ngoc et al. Computers and Structures 281 (2023) 107018
the trap of local minimum solutions using this traditional
approach. In the past two decades, this problem has been gradually
solved owing to the sharp development of metaheuristic optimiza-
tion algorithms, such as particle swarm optimization algorithm [8],
Jaya algorithm [9], etc.

Generally, these optimization algorithms are applied to param-
eter identification, which is essentially an iterative optimization
process that requires many calls to the finite element model [10].
Such a rough operation is inefficient for complex large-scale struc-
tures, such as concrete dams. Finite element models are sufficient
to characterize these structural properties, but they are normally
computationally expensive. To overcome this shortcoming, many
researchers have resorted to popular machine learning algorithms,
among which the data-driven surrogate model comes to the fore
quickly.

The surrogate model is an approximate mathematical model
that attempts to offset the incremental cost of stochastic models
by substituting an expensive computational model at a low-cost
[11]. In recent years, surrogate models have gained a lot of
momentum in the field of inverse analysis, spawning a novel cou-
pling algorithm, i.e. Surrogate model-Assisted Metaheuristic Opti-
mization Algorithm, denoted as SAMOA, for parameter
identification. The core of the SAMOA is to build a surrogate model
that can characterize the mapping relationship between input
parameters with stochastic characteristics and the system’s
response (or Quantity of Interests - QoIs) [12]. Many kinds of sur-
rogate models have been developed, and some of the more popular
ones are Polynomial Chaos Expansion (PCE) [13], Radial basis func-
tions (RBF) [14], Artificial neural networks [15], and so on.

1.1. Application of PCE to dams

PCE has been widely used in dam engineering in the last few
years. Ghanem et al. [16] first introduced the PCE model for surro-
gate modelling of embankment dams. Guo et al. [17,18] performed
the reliability analysis on an embankment dam using the sparse
PCE, and evaluated its sliding stability. Hariri et al. [19] compre-
hensively quantified the uncertainty in dam engineering problems
based on PCE via four different case studies with various complex-
ities, encompassing various aspects of analytical and numerical
modelling, static and seismic analysis, etc. Amini et al. [20] applied
the adaptive PCE for sensitivity and reliability analysis of aging
dams and investigated the copula dependency among the random
variables (RVs). Kalinina et al. [21] conducted the study on the
uncertainty in instantaneous dam-break floods by adopting PCE
to approximate the flood model and explored the effect of uncer-
tain input parameters on output variability based on Sobol’ sensi-
tivity indices. Shahzadi et al. [22] combined PCE with deep neural
networks to construct a surrogate model for rockfill dams and to
assess the effect of constitutive soil parameters on the behaviours
of a rockfill dam. Hariri et al. [23] coupled random forests with PCE
to perform sensitivity analysis for symmetrical and asymmetrical
arch dams and to identify the most critical locations. Sevieri
et al. [24,25] developed a generalized PCE-based probabilistic pro-
cedure in a Bayesian framework, incorporating parameter identifi-
cation and seismic fragility analysis for concrete gravity dams.

1.2. SAMOA-based parameter identification in dams

Monitoring data (e.g., measured displacements and frequencies)
are commonly used for parameter identification in dams [26]. Liu
et al. [27] proposed a coupled Unconstrained Lagrangian Support
Vector Machine (ULSVM) and Cultural Genetic Algorithm (CGA)
for optimizing the zoned elasticity module of a high arch dams
during the initial impound period. Kang et al. [28,29] combined
separately Kernel Extreme Learning Machine (KELM)-based
2

Response Surface Model (RSM) and Kriging model with Jaya algo-
rithm to identify the unknown static and dynamic parameters of
dams. Bao et al. [30] identified multi-parameters of the Jinping-I
arch dam based on Multi-output Least Squares Support Vector
Regression (MLSSVR) combined with Improved Differential Evolu-
tionary algorithm (IDE). Li et al. [31] combined RSM with Genetic
Algorithm (GA) to identify the dynamic elastic modulus of the
dam and foundation with a prototype arch dam during the flood-
ing. Liu et al. [32] utilized operational modal analysis techniques
to extract the first three major frequencies and basic mode shapes
of the dam and developed support vector regression assisted parti-
cle swarm optimization algorithm to determine its dynamic elastic
modulus.

The literature mentioned above demonstrates the abundant
applications of PCE models in dam engineering, but it mainly
focuses on parameter sensitivity analysis and uncertainty propaga-
tion of dams, with few studies applying them to parameter identi-
fication. However, PCE models can accurately develop alternative
models of dams at a very low computational cost, which is ideal
for bypassing the expensive finite element models of dams. More-
over, Slime Mould Algorithm (SMA), a newly developed stochastic
optimization algorithm, has been shown to have good performance
in terms of global optimization and convergence speed, but has not
been too deeply involved in the application of large structures. In
this paper, SMA and PCE (SMA-PCE) are combined to explore their
practicability and high performance for multi-parameter identifi-
cation in dams. The main contributions of the work are summa-
rized as follows:

� A framework for rapid identification of dam parameters is
developed, covering how to construct and evaluate PCE models,
and how to couple PCE models with SMA based on objective
functions for rapid parameter identification.

� The effectiveness of the proposed algorithm was verified with a
simply supported beam, and then the practicality was con-
firmed with a multi-parameter hyperbolic arch dam. The results
show that the coupled SMA-PCE algorithm significantly
improves the computational efficiency without any reduction
of accuracy compared to the classical method based on tradi-
tional optimization algorithms.

� While the sensitivity analysis of the dam parameters is carried
out at an extremely low-cost based on the PCE model, the influ-
ence of important factors in the PCE model and SMA on the
accuracy of the coupled SMA-PCE algorithm is explored. A rela-
tively optimal combination of factors is given to further
improve the accuracy of the algorithm.

The subsequent sections in this paper are arranged as follows. A
brief review of the PCE and SMA is provided in Section 2. The
detailed description on the procedures and evaluation metrics of
the SMA-PCE algorithm is presented in Section 3. The effectiveness
of the SMA-PCE algorithm is validated by simply supported beam
model in section 4, and then the multi-parameter identification
of concrete dam using the SMA-PCE algorithm is introduced in sec-
tion 5. Finally, the conclusions are given in Section 6.
2. Theoretical background

2.1. Polynomial chaos expansion

The classic PCE was first introduced by Wiener [33]. The key
concept of PCE is to express the computational model on the basis
of an orthogonal polynomial with input random variables [34] and
is well-suited to solve the global smoothing problem, which is
common in many engineering applications.
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Considering a M dimensional random vector with independent
components x ¼ fx1; x2; � � � xMg described by the joint PDF
f xj ; j ¼ 1;2;M, the scalar Y resulted from this system is also a ran-

dom variable, denoted Y ¼ MðxÞ. Y can be expressed exactly in an
exact infinite expansion using the following equation [35,36]:

Y ¼ MðxÞ � MPCEðxÞ ¼
X
j2A

njujðxÞ ð1Þ

where j ¼ fj1; � � � ;jngðjj � 0Þ 2 A is the multidimensional index
notation vector and A 2 NM is the truncation set of multi-indices.
nj 2 R are the expansion coefficients to be determined and
ujðxÞ ¼

QM
j¼1w

ðjÞ
jj
ðxjÞ are multivariate polynomials orthogonal with

respect to f x, among them, w jð Þ
jj

is the univariate orthogonal polyno-

mial in the jth variable of corresponding polynomial degree jj.
The sparsity-of-effects principle states that most models

describing physical phenomena are governed by main effects and
lower order interactions in the real world [37]. Hence, the accuracy
of Eq. (1) depends on A as well as nj, which can be enhanced by
truncation. There are two main truncation schemes, i.e., standard
and hyperbolic [38,39], which are described in this section. The for-
mer one corresponds to all polynomials in the M input variables of
total degree less than or equal to p:

AM;p ¼ fj 2 NM : jjj � pgcardAM;p � P ¼ ðM þ p

p
Þ ¼ ðM þ pÞ!

p!M!

ð2Þ
A modification of the standard scheme, the hyperbolic trunca-

tion scheme makes use of the parametric q to define the
truncation:

AM;p;q ¼ fj 2 AM;p : kjkq � pg; kjk ¼ ð
XM
i¼1

jq
i Þ

1=q

ð3Þ

where q = 1 for the standard truncation scheme in Eq. (2) and
q < 1 for hyperbolic truncation. Reducing the q-value decreases
the number of polynomials of high interaction order included in
the expansion, thus significantly reducing the number of model
evaluations, but at the meantime, some errors may be caused by
missing higher order terms [40]. Fig. 1 presents the variation of p
and q for Hyperbolic truncation.

The infinite series in Eq. (1) can be rewritten as follows:

Y ¼ MðxÞ ¼
XP�1

j¼0

njujðxÞ þ ep � nTwðxÞ þ ep ð4Þ

where P is defined based on Eq. (2), ep is the truncation error, and

superscript T means transpose. n ¼ fn0; � � � ; nP�1gT is a vector con-
taining the coefficients and uðxÞ ¼ fu0ðxÞ; � � � ;uP�1ðxÞgT is the vec-
tor that assembles the values of all the orthogonal polynomials in x.

There are multiple techniques to calculate the expansion coeffi-
cients nj in Eq. (1), which might be divided into intrusive or non-
Fig. 1. Hyperbolic truncation set f
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intrusive approaches. The former one is originally proposed in
the context of the probabilistic finite element method [41], which
is mainly used to discretize the constitutive equation both in phys-
ical space and random space. The coefficient calculation based on
the latter is a post-processing result obtained from a set of model
evaluations (also called the design of experiment DOE [42]), that
are given on proper sampling of the random input variables. An
advanced non-intrusive method, Least Angle Regression (LAR)
[43], is adapted as a strategy to calculate the expansion
coefficients.

The least angle regression (LAR) algorithm uses low-rank trun-
cation schemes, which aims to find coefficient vectors with only a
few non-zero entries (i.e., sparse solutions), while the other coeffi-
cients are set to zero. It can be formulated by expanding the least
square minimization and adding a penalty term kknk1 as:

n̂ ¼ argmin
n2RP

E½ nTuðxÞ � Y
� �2	 þ kknk1 ð5Þ

where j n̂
��� ���j

1
¼ P

j2Ajnjj is the regularization term that forces the

minimization to favor low rank solutions.

2.1.1. PCE-based Sobol’ indices for sensitivity analysis
Global sensitivity analysis can quantify the impact of input vari-

ables on the importance of model outputs, which aims to reduce
the dimensions of the problem to minimize the number of model
evaluations as much as possible [44]. Sobol’ indices are common
for sensitivity analysis based on variance decomposition, moti-
vated by the idea of the extension of the computational model as
a sum of increasing dimensions [45].

Suppose that all M dimensional input variables are
x ¼ ðx1; x2; :::; xMÞ 
 u½0;1	M , therefore, the Sobol’ decomposition is
defined as in Eq. (6) :

M xð Þ ¼ M0 þ
XM
i¼1

Mi xið Þ þ
X

1�i<j�M

Mij xi; xj
� �þ � � � þM12���M xð Þ

¼ M0 þ
X

v� 1;���;Mf g
Mv ð6Þ

where v ¼ fi1; � � � ; isg is a non-empty generic index set.
Hence, the total variance of the modelM is described in terms of

the sum of the variances as follows:

D � Var½MðxÞ	 ¼
X

v�1;���;M
Var½MvðxvÞ ð7Þ

Eq. (7) naturally leads to the natural definition of Sobol’ indices
for sensitivity analysis:

Sv ¼ Var½MvðxvÞ	
D

ð8Þ

Which represents the relative contribution of each group of
variables fxi1 ; � � � ; xisg to the total variance, among them. The index
concerning one input variable xi is called the first order Sobol’
or p and q, adopted from [19]
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index, which is widely used due to its capacity to quantify the
additive effect of each input parameter individually, which can
be defined as:

Si ¼ Di

D
¼ Var½MiðxiÞ	

D
ð9Þ

In addition, the sum of all Sobol’ indices involving this variable
xi is termed as the total Sobol’ index, denoted Si

T:

STi ¼
X
v�i

Sv ð10Þ

However, classical Monte Carlo-based Sobol’ indices require
extensive model evaluation, which makes them difficult to use
with computationally expensive models. In order to bypass this
problem, Sudret [13] has developed a PCE-based Sobol’ indices
for sensitivity analysis with low computational cost, which can
be obtained by reordering the terms of the truncated PCE as in
Eq. (2).

To conveniently reflect the decomposition into sums of increas-
ing order, Eq. (6) can be reordered as:

MPCE xð Þ ¼ M0 þ
X

v�1;���;M
Mv xvð Þ;whereMv xvð Þ

¼
X
j2Av

njuj xð Þ ð11Þ

where Av ¼ fj 2 A : l 2 v () jl–0g is the set containing all
multi-indices with non-zero components in the truncation set A.

Due to the orthogonality of the polynomial chaos basis, the
Sobol’ indices are obtained analytically, at any order from the coef-
ficients of the truncated PCE, hence, Eq. (8) can be rewritten as:

Sv ¼ Dv=D ¼
X
j2Av

n2j=
X
j2A

n2j ð12Þ
2.2. Slime mould algorithm

In this section, the mathematical model of the slime mould
algorithm is described in detail [46].

The Slime mould can approach food in response to airborne
odours. In order to show its behaviours in a mathematical descrip-
tion, the following equation is introduced to reflect the reduction
pattern.

Xðt þ 1Þ�����! ¼ XbðtÞ
���!þ vb

�! � ðW � XAðtÞ
���!� XBðtÞ

���!Þ; r < p

vc��!XðtÞ��!
; r � p

(
ð13Þ

where Xb
�!

represents the individual location with the highest odor
concentration currently found, t represents the current iteration,

parameter vb
�! ¼ ½�a; a	; a ¼ arctanhð�ðt=max tÞ þ 1, and vc�! lin-

early diminishes from 1 to 0. XA
�!

and XB
�!

represent two individuals

randomly selected vectors from the swarm. X
!

represents the loca-
tion of slime mould, r denotes the random value in the interval of
[0,1], p ¼ tanhjSðiÞ � DFj, among them, Si; i 2 1;2; :::;n represents

the fitness of X
!
. DF refers the best fitness obtained in all iterations

and W
�!

represents the weight of slime mould.

W
�!

can be determined by the following formula:

WðSmallIndexÞ�����������! ¼ 1þ r � logðbF�SðiÞ
bF�wF þ 1Þ; condition

1� r � logðbF�SðiÞ
bF�wF þ 1Þ;others

(
ð14Þ

where SmellIndex = sort(S) indicates that the fitness values are
sorted ascending in the minimum value problem and bF and wF,
respectively, denote the best and worst fitness value gained from
4

the current iteration. The term ’condition’ indicates that S(i) ranks
first half of the population.

Fig. 2(a) visualizes the effects of Eq.13 and illustrates the posi-
tion change of the searching individual in 2D and 3D space, from
which we can observe that the searching individuals can forage
without any angular or directional constraints. This allows them
to approach the optimal solution in all possible directions. It is also
applicable to extend this concept to Hyper-dimensional space.

The mathematical formula for updating the location of slime
mould is written as follows:

X�! ¼
rand � UB� LBð Þ þ LB; rand < z

XbðtÞ þ vb
�! � ðW � XAðtÞ

���!� XBðtÞ
���!Þ; r < p

vc��!XðtÞ��!
; r � p

8>><
>>: ð15Þ

where LB and UB denote the lower and upper boundaries of search
space, and their values are usually set artificially depending on the
specific problem. In this paper, in order to explore the boundaries of
search space, LB and UB are considered in conjunction with the prior
probability space of the input parameters, denoted as LB = l �
RF � r and UB = l + RF � r. Among these parameters, l and r
are, respectively, the mean and standard deviation of the probabil-
ity distribution for the input parameters. RF is the range factor of
the search boundary. Hence, scaling of the search space can be
achieved by varying the value of RF.

Both vb
�!

an vc�! tend to zero gradually as the position of slime
mould is updated continuously, meanwhile, the searching individ-
uals will dock near the optimal location. A concise flowchart for
describing the three different stages of SMA can be found in
Fig. 2(b).
3. Proposed parameter identification Algorithm: SMA-PCE

The procedure of the proposed SMA-PCE algorithm for parame-
ter identification is described in detail below.

Phase One - Define the problem (Step A): The first step is to
build a finite element model to characterize the response of the
real structure and to define a probabilistic input prior model (dis-
tribution type, mean and deviation) for the unknown parameters
to be identified. The parameters of the real structural system are
often inherently stochastic, and it is more realistic on account of
uncertainty in the input parameters.

Phase Two - Constructing and evaluating PCE models (Step B-
C): A certain number of input parameter datasets are generated
using Latin Hypercube Sampling (LHS) and the corresponding out-
put response datasets are then extracted based on probabilistic
finite element models. Finally, the PCE surrogate model is con-
structed based on the ‘input-output’ sampling spectrum and its
accuracy is evaluated by leave-one-out (LOO) cross-validation
error, with resampling to generate more sampling points if accu-
racy is insufficient.

Phase Three - Coupling the PCE model with SMA and minimiz-
ing the objective function (Step D-E): Once an accurate and reliable
PCE model has been constructed, it can be used as a direct substi-
tute for the finite element model to calculate the output of the
structural response, which directly bypasses a series of problems
caused by the expensive computational cost of the Finite Element
Analysis (FEA). By incorporating the predicted and measured out-
put into the objective function, the coupling of the PCE model to
SMA is implemented.

Phase Four - Parameter identification posterior verification
(Step F): Post-process the optimal value of the parameter identifi-
cation and treat it as a realistic value of the unknown input param-
eters for the model updating process.



Fig. 2. Graphical and flowchart presentation of SMA: (a) Possible locations in 2D and 3D (adopted from [47] and (b) flowchart describing the three phases of SMA.

Fig. 3. Flowchart to describe the SMA-PCE method.
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A detailed description of the flowchart of the SMA-PCE algo-
rithm is shown in Fig. 3.

3.1. Metrics to evaluate SMA-PCE

The LOO cross-validation error, ErrLOO, is a model accuracy eval-
uation method developed based on statistical learning theory,
which not only can largely reduce the risk of over-fitting the data
set by cross-validation, but also, does not require running addi-
tional expensive model evaluations to generate an appropriate val-
idation set [13].

After the PCE model is constructed (see Section 2.1), its accuracy
and predictive quality can be quantified. This error method
includes the construction of N PCE models MPCE�, building on a left
experimental design X xðjÞ ¼ fxðkÞ; k ¼ 1; � � � ;N; k–jg, and then com-
paring the true value yðjÞ with the predicted value on the excluded
point [48]. It is defined as:

ErrLOO ¼
PN

j¼1ðMðxðjÞÞ�MPCE�ðxðjÞÞÞ2PN
j¼1ðMðxðjÞÞ�l̂Y Þ2

ð16Þ

where l̂Y ¼ 1
N

PN
j¼1MðxðjÞÞ is the sample mean of the experimental

design response.
The mean absolute percentage error (MAPE) is a common met-

ric in statistics to assess the accuracy of the prediction methods. In
terms of root mean square error, etc., it has a more intuitive inter-
pretation in the form of a percentage. Hence, MAPE is selected as
the objective function to evaluate the accuracy of the SMA-PCE
method in this paper. Its formula is shown below:

MAPE ¼ 100%
n

Xn

i¼1

jytrue;i � yPCE;ij
ytrue;i

ð17Þ

where ytrue;i is the actual measured value and yPCE;i is the forecast
value based on PCE model, n is the number of fitted points.

4. Validation of SMA-PCE by a simply supported beam

This section explores the validity of the SMA-PCE method for
parameter identification by studying a simply supported beam.

4.1. Construction of parameter prior distribution space

This example evaluates a simply supported beam with a well-
defined analytical expression for mid-span deflection, that is

Vmid ¼ 5pL4

32Ebh3
, having a uniformly distributed load p = 12,000 N/m,

length L = 5.0 m, width b = 0.15 m and height h = 0.30 m. A set
of N = 5 independent experiments were carried out on this beam,
and the measurements were [49]: 12.84, 13.12, 12.13, 12.19, and
12.67 mm. Due to measurement error, the measured deflections
vary across experiments. Assuming that the modulus of elasticity,
E, is an unknown input parameter and is subjected to a lognormal
distribution, LN (30, 4.5) GPa. On this basis, the geometric model,
Fig. 4. Geometric and numerical models to describe simply suppor
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and the finite element model of the simply supported beam are
established as shown in Fig. 4. The finite element model is built
directly based on ANSYS APDL using hexahedral SOLID185 ele-
ments, with the size of each element being 0.1 m � 0.03 m � 0.0
3 m, and a total of 2500 elements (Nelements = 2500). In this paper,
the finite element analysis assumes small deformation, and uses
linear elastic constitutive relation for the quasi-static analysis of
the structure.

4.2. Results and discussions

This section presents the results of constructing the PCE model
and the accuracy of parameter identification based on the SMA-
PCE algorithm for the simply supported beam. The unknown input
parameter E is sampled by 100 times using the LHS method, and
then, these ‘‘one-to-one” calculated mid-span deflections (outputs)
are extracted based on the probabilistic FEA. The initial ‘‘input and
output” dataset consists of two parts: the dataset for the design of
the experiment, NDOE, and the dataset for validation, Nval. The for-
mer is used to construct the PCE model, and the latter is used to
verify its prediction accuracy by LOO cross-validation error.

The numerical computing environment in this paper is based on
a high-performance UNIX workstation with 36-core CPU and
192 GB of memory, and the probabilistic FEA is executed in ANSYS
APDL by calling 12-core CPU. The open-source software UQLab [50]
is used to construct the PCE model, and then the algorithmic cou-
pling of PCE and SMA is implemented in MATLAB.

To explore the effect of different truncation schemes and poly-
nomial degrees on the accuracy of the PCE model, considering
truncation norm q = [1.0, 0.75, 0.5] and polynomial degree p =
[1,2,3,4,5,6] in this paper, a sum of 18 PCE models based on
NDOE = 20 and Nval = 20 is constructed as shown in Fig. 5(a) with
the following major observations:

� In the selected p-set, the accuracy of the PCE model is propor-
tional to p and the PCE model has high reliability when p � 2.

� Different truncation schemes have almost no effect on the accu-
racy of the PCE model in a simple univariate structure. Accord-
ing to Fig. 1, when the evaluation point falls in the low-
dimensional space (close to the origin of the coordinates), it
always participates in the model evaluation even if the q value
changes.

In addition, in order to further reveal the factors affecting the
accuracy of the PCE model, we also consider different element sizes
Nelements = [500, 1000, 2500, 5000] and NDOE = [5, 10, 20, 40, 80].
Based on the above analysis, q = 0.75 is chosen as the truncation
scheme for this exploration, subsequently, a series of PCE models
is constructed with the same validation dataset as shown in
Fig. 5(b) and (c). Some interesting observations are as follows:

� From Fig. 5(b), we can notice two observations. (i) For different
element sizes (different Nelements), the accuracy of the PCE model
increases with the number of polynomial degree p within the
ted Beam: (a) Geometric model and (b) finite element model.



Fig. 5. Construction of PCE model and parameter identification for simply supported beam: (a)
(c) Accuracy of PCE model and (d) comparison between the accuracy of SMA-
PCE and BO-PCE.
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selected p-set, which is the same as in Fig. 5(a). (ii) the accuracy
of the PCE models corresponding to the finite element models
with different mesh densities shows some differences, which
is due to the fact that the accuracy of the output response of
the structural finite element model is closely related to its mesh
density, and generally shows a positive correlation.

� From Fig. 5(c), we can observe that with the increase of NDOE,
the accuracy of the PCE model increases corresponding to the
four finite element models with different Nelements. Especially
before NDOE = 20, the ErrLOO has a sharp decrease. After that,
although it decreases, the rate has slowed down, and it can be
predicted that the final convergence will occur.

As a rule of thumb, the surrogate model can be a perfect alter-
native for the original computational model when its accuracy
reaches 10�3. While higher accuracy is desirable, it may not be effi-
cient from a computational cost point of view. Therefore, keeping
the surrogate model balanced in terms of accuracy and cost is
essential. So, the PCE model with the moderate collection [p = 3,
q = 0.75, NDOE = 20, Nval = 20] is selected as the pilot model and
coupled with SMA. Meanwhile, the well-known non-population
stochastic optimization algorithm, Bayesian optimization (BO), is
coupled with PCE for comparison with this algorithm. The follow-
ing notations specify respectively each combination: SMA-PCE and
BO-PCE. Their accuracy and convergence characteristics are
reflected in Fig. 5(d), from which we can observe that SMA-PCE
has faster convergence and stronger robustness than BO-PCE. How-
ever, both algorithms converge to almost the same value of compu-
tational accuracy after 30 iterations, i.e., MAPE is less than 3%,
7

which meets the acceptance criteria for this simple structure. This
directly demonstrates the effectiveness of SMA-PCE for parameter
identification.

In addition, a similar exploration into the accuracy of the PCE
model has been applied to explore the accuracy of SMA-PCE. From
Fig. 6, we can draw the following conclusions:

� A vertical comparison, for the same qwith different p, where the
convergence rate of SMA-PCE in the pre-convergence oscillation
phase, does not correlate with the accuracy of the PCE model.

� A horizontal comparison, for different q with the same p, even
though the accuracy of the PCE model is the same, shows that
the accuracy of SMA-PCE still has a slight difference in the
pre-convergence oscillation stage. This is caused by the stochas-
tic search characteristic of SMA.

� Overall, SMA-PCE basically converges consistently when the
number of iterations, Niter, exceeds 10, which further demon-
strates that SMA-PCE is well-suited for parameter identification
with a very fast convergence rate and strong robustness.
5. Application of SMA-PCE to dam structure

The previous section verifies the excellent effectiveness of the
SMA-PCE method based on the univariate simply supported beam.
In this section, the same algorithm is applied to the multivariate
complex structure, a concrete hyperbolic arch dam, to explore
the applicability of this algorithm for large civil engineering
structures.



Fig. 6. Quantifying the accuracy of the SMA-PCE method in simply supported Beam for different values of p and q: (a) q = 1.0, (b) q = 0.75 and (c) q = 0.5.
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5.1. Experimental measurements on dam

Dayakou dam is a concrete double-curved arch dam, for which
the top and bottom elevations are 653 m and 558 m, respectively,
and the maximum dam height is 95 m. The dam is designed with
four transverse-joints in the form of a through-seam and the max-
imum spacing is about 70 m. In addition, three overflow surface
holes are placed in the middle of the dam crest, with the weir crest
elevation of 643.5 m and the net width of each hole is 10.0 m. The
layout of these constructions can be clearly seen in Fig. 7(a). The
dam was completed in November 2015 and began to store water
in February 2017 until the end of July 2017.

For more reliable characterization of the actual structural
response, a high-precision ‘‘dam-foundation” three-dimensional
finite element model was constructed based on hexahedral and
tetrahedral SOLID185 elements in ALTAIR HyperMesh, as shown
in Fig. 7(b). The whole model was divided into six components,
where the dammodel consists of the dam body and the weak layer,
and the foundation model made up of bottom and top bedrock as
well as geological faults, in between, the base surface for buffering
is provided to enhance the slip and seepage resistance of the dam.
In addition, the foundation model is extended to 1.5 and 2.5 times
the dam height in the upstream and downstream directions,
respectively, and it is also extended to 2 times the dam height to
the left, right, and bottom. The classical mass-less foundation
method was used to simulate the infinite boundary, and the
quasi-static analysis executed based on small deformation
assumptions and linear elastic constitutive relation. Their basic
properties are reported in Table 1.

The measured points on the A1 measurement line in the middle
of the dam to monitor the arch dam deformation are shown in
Fig. 7(a). The measured points 1 and 2 are arranged on the positive
8

vertical line, and the measured point 3 is arranged on the inverted
vertical line. Since the base point of the inverted vertical is posi-
tioned deep in the rock foundation, the default absolute displace-
ment is 0. By calculating the measured data of each measuring
point, the absolute displacement at the three measured points
can be obtained, i.e., the measured displacement along the river,
Uy, for subsequent parameter identification.
5.2. Load analysis based on measured data

Since there are significant distinctions in the load situation of
the dam at different periods, the impounding period after the com-
pletion of the dam was selected as the target of this paper. Typi-
cally, the load situation on the dam during this period is
dominated by hydrostatic pressure and temperature loads, where
hydrostatic pressure depends on the reservoir water level at the
upstream and downstream of the dam. Temperature loads are
mainly caused by the difference between the temperature field of
the dam surface and the temperature field of the seal arch grout-
ing. Fig. 8 illustrates the distribution of the latter at upstream
and downstream of the dam.

Based on the relevant measured data, the upstream reservoir
water level of the dam as well as the average monthly air temper-
ature and surface water temperature over time are summarized in
Fig. 9. From Fig. 9, we can observe that the dam started to store
water on February 15, 2017, and then, the upstream reservoir
water level was increased to the normal water level of 648 m on
July 15, 2017. For the sake of simplifying the complexity of the
problem, the two-time points (2017/6/15 and 2017/7/15) with
the closest reservoir water levels are selected as references. The
corresponding upstream water levels are 647.3 m and 648 m,
and the downstream water level is always 571 m, upon which



Fig. 7. Description of Dayakou arch dam: (a) Dam downstream plane and the layout of measured points and (b) numerical model.

Table 1
Basic parameters of the finite element model for Dayakou arch dam.

Component Order and Name No. of
Elements

Elastic modulus
[GPa]

Density
[kg/m3]

Poisson’s
ratio [-]

Coefficient of linear
thermal expansion [1/�C]

1-Dam body 47,788 20 2400 0.19 7.0 � 10�6

2-Base surface 2304 20 2400 0.19 7.0 � 10�6

3-Weak layer of dam 4040 16 2400 0.21 7.0 � 10�6

4-Bottom bedrock 129,569 12 – 0.22 –
5-Top bedrock 22,160 6 – 0.26 –
6-Geologic fault 4983 5 – 0.3 –

Fig. 8. Sealing arch grouting temperature field of Dayakou arch dam: (a) Downstream and (b) upstream.
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Fig. 9. Measured reservoir water level and temperature of Dayakou arch dam.
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the hydrostatic pressure of each node can be calculated. In addi-
tion, the measured displacements at these two time points can
be obtained based on the measured data, which are shown in
Table 2.

However, the calculation for temperature loads is more com-
plex, in which the surface temperature field of the dam is divided
into two parts. The first part is the boundary temperature field of
the dam in contact with the air, which adopts an optimization
method to determine its value, after considering that the concrete
surface temperature is impacted by light. The optimization strat-
egy is to generate 5 sets of sample data in the temperature interval
with or without sunshine, as in shown Table 2, where W1 is sun-
shine considered, W2 is sunshine not considered, and W3-7 is ran-
dom sampling in both intervals based on the LHS method.
According to the above work conditions, the FEA was carried out
separately, and then the Root Mean Square Error (RMSE) was
selected to estimate the difference between the measured and cal-
culated displacements, and the temperature value with the small-
est RMSE was chosen as the optimal boundary temperature. The
second part is the boundary temperature field of the dam in con-
tact with water, which can be obtained by linear interpolation
based on a small amount of measured data from the underwater
surface temperature of the dam with consideration of light.

Considering that the sealing arch grouting temperature of the
dam is below 20 �C in most regions, which is lower than the calcu-
lated surface temperature of the dam in this case, the applied loads
are dam self-weight, hydrostatic pressure (form upstream and
downstream reservoirs), and temperature loads.
Table 2
Optimization for the temperature field at the boundary between the dam and the air.

Time Measured point

Measured
displacement
(mm)

Bounda
in cont
(℃)

Relative Absolute W1
value value 31.5

2017/6/15
1 3.62 7.44 4.510
2 2.14 3.82 2.411
3 1.68 1.68 0.517

RMSE 1.994

2017/7/15
4 3.86 8.22 4.510
5 2.32 4.36 2.411
6 2.04 2.04 0.517

RMSE 2.574
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5.3. Construction of prior distribution parameter space

In this example, the modulus of elasticity and the Coefficient of
Linear Thermal Expansion (CLTE) are considered as unknown input
parameters and obey Gaussian distribution model, with the aver-
age of a few field measurements as the mean and given a 10% stan-
dard deviation. The probabilistic input priori model of the nine
unknown parameters is shown in Table 3, and then, the calculated
displacement along the river at these measured points is extracted
as outputs (QoIs). The numerical calculation environment is the
same as in Section 4.

5.4. Parameter sensitivity analysis based on PCE

This section also provides a comprehensive exploration on the
impact of different truncation schemes and polynomial degrees
on the accuracy of the PCE model. Then, a PCE model with reliable
accuracy is selected for sensitivity analysis on the input parame-
ters as shown in Table 3, to reveal their effects on structural output
response.

In this case, 40 sets ‘‘input–output” datasets are extracted for
constructing the PCE model in the same way as in Section 4.2.
Fig. 10 shows the accuracy of all PCE models for the Dayakou arch
dam, fromwhich we can come to some conclusions that differ from
univariate modelling:

� Generally, Hyperbolic truncation (q < 1) improves the accuracy
of the PCE model.
ry temperature of the dam
act with the air

W2 W3 W4 W5 W6 W7
26.9 27.88 30.38 29.15 28.77 29.32

9.930 8.772 5.829 7.277 7.724 7.077
4.370 3.949 2.887 3.409 3.571 3.337
1.210 1.058 0.684 0.868 0.925 0.843
1.496 0.852 1.219 0.534 0.487 0.596
9.930 8.772 5.829 7.277 7.724 7.077
4.370 3.949 2.887 3.409 3.571 3.337
1.210 1.058 0.684 0.868 0.925 0.843
1.102 0.692 1.801 1.027 0.839 1.123



Table 3
Unknown parameter probabilistic input priori model for Dayakou arch dam.

Component Number Unknown Parameters Symbol Model Quantity

1
Elastic Modulus E1 Gaussian N (20, 2)
CLTE a1 Gaussian N (7.0 � 10�6, 7.0 � 10�7)

2
Elastic Modulus E2 Gaussian N (20, 2)
CLTE a2 Gaussian N (7.0 � 10�6, 7.0 � 10�7)

3
Elastic Modulus E3 Gaussian N (20, 2)
CLTE a3 Gaussian N (7.0 � 10�6, 7.0 � 10�7)

4 Elastic Modulus E4 Gaussian N (12,1.2)
5 Elastic Modulus E5 Gaussian N (6, 0.6)
6 Elastic Modulus E6 Gaussian N (5, 0.5)

Fig. 10. Quantification of ErrLOO in the Dayakou arch dam based on the PCE model. Note: QoIs 1–3 and QoIs 4–6 separately correspond to three measured points on 2017/6/15
and 2017/7/15.
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� In muti-parameter, the polynomial degree, p, is not necessarily
positively correlated with the accuracy of PCE model.

� In a trade-off comparison, the PCE model has a high accuracy for
all three different truncation schemes when p = 2.

Consequently, the six PCE models corresponding to q = 0.75 and
p = 2 are selected to characterize the Dayakou arch dammodel. The
accuracy of each PCE model is close to or below 1E-2, which satis-
fies the requirement of prediction accuracy for large civil engineer-
ing structures. Accordingly, PCE-based Sobol’ indices sensitivity
analysis concerning the input parameters of the Dayakou arch
dam was carried out, and the results are illustrated in Fig. 11.

� It is obvious that E1 and a1 have the paramount importance on
the structural output response, since Component 1 in Table 1 is
the absolute-dominant part of the dam.

� Total Sobol’ indices and First order Sobol’ indices have a slight
difference in results, which is caused by that higher-order inter-
actions between input parameters having extremely less impact
on the overall results of parameter sensitivity analysis.
Fig. 11. PCE-based Sobol’ indices for the Dayakou arch dam:
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5.5. Comparison and remarks

These crucial factors affecting the accuracy of the PCE model are
discussed in detail in Section 4.2. However, two important factors
affecting the accuracy of SMA, that is, the number of search agents
N and the search boundary range factor RF, which have not been
explored. Hence, this section will further explore the impact of
these important on the accuracy of the SMA-PCE method for Day-
akou dam.

This issue is explored using the control variables method. First,
the important factors in SMA are fixed to explore the effect of vary-
ing p and q on the accuracy of the SMA-PCE method, and their
results are shown in Fig. 12, from which we can draw the following
conclusions:

� For multivariate parameter identification, different PCE model
accuracy has a more significant impact on the accuracy of the
SMA-PCE algorithm, which is distinctly different from the previ-
ous conclusions in the univariate Simply Supported Beam
model.

� The accuracy of the PCE model is not proportional to the accu-
racy of the SMA-PCE method. For example, the PCE model has
the highest accuracy when p = 2 in a compromise, but currently
the accuracy of the SMA-PCE algorithm is not so satisfactory.
(a)Total Sobol’ indices and (b) first order Sobol’ indices.



Fig. 12. The accuracy of the SMA-PCE method for different values of p and q, N = 10 and RF = 3: (a) q = 1.0, (b) q = 0.75 and (c) q = 0.5.

Fig. 13. The accuracy of the SMA-PCE method; q = 0.75 and p = 5. (a) varying values of N, RF = 3; (b) varying values of RF, N = 5.
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� No matter how much q, the SMA-PCE algorithm always has
good accuracy when p = 5.

Comprehensively, considering the accuracy of the PCE model
and SMA-PCE method, p = 5 and q = 0.75 may be deemed to be a
preferable choice. On this basis, the effects of varying N and RF
on the accuracy of SMA-PCE are explored separately. The results
are shown in Fig. 13.

� Overall, varying the values of both N and RF has a moderate
effect on the accuracy of the SMA- PCE method.

� In theory, the larger the value of N is, the greater the possibility
of convergence to the local optimal solution. But in the view of
12
Fig. 13(a), convergence occurs when N � 5, and if a too large
value of N is chosen, it will instead greatly increase the con-
sumption of computational resources.

� Varying RF value has a greater impact on the SMA-PCE accuracy
than varying N value. This can be well explained by the fact that
when RF is fixed, increasing the value of N will improve the effi-
ciency of SMA search for local optimum. Fig. 13(a) shows that
when N � 5, the algorithm tends to converge after 40 iterations.
However, when N is fixed, but increasing the value of RF, i.e., the
search boundary is extended, the speed of SMA in finding the
local optimummay decrease. Fig. 13(b) shows that the accuracy
of the SMA-PCE method not only shows a larger oscillation
when RF � 4, but also decreases compared to RF = 3.



Table 4
Comparison between the measured and predicted parameters for Dayakou Dam.

Working condition Measured point Uy [mm] SMA-PCE BO-PCE SMA-FEM BO-FEM

2017/6/15 1 7.44 7.438 7.498 7.476 7.487
2 3.82 3.825 4.881 3.911 3.942
3 1.68 1.634 1.380 1.535 1.390

2017/7/15 1 8.22 8.528 8.564 8.583 8.504
2 4.36 4.180 4.488 4.261 4.477
3 2.04 1.850 1.594 1.768 1.611

MAPE 3.343% 8.202% 5.253% 8.043%
Part 1[h] 0.578 0.578 – –
Part 2[s] 11.92 488.32 – –
Total time [h] 0.581 0.715 30.06 27.66

Fig. 14. Comparison of accuracy and efficiency between SMA-PCE and SMA-FEM inversion algorithms for Dayakou Dam: (a) Inversion accuracy evaluation and (b) inversion
efficiency evaluation.

Table 5
Parameter identification results and calculation time of each algorithm for Dayakou Dam.

Methods SMA-PCE BO-PCE SMA-FEM BO-FEM

E1 25.8 20.2 26 25.3
a1 7.69 � 10�6 8.96 � 10�6 5.96 � 10�6 5.99 � 10�6

E2 14 15.7 14 16.9
a2 7.27 � 10�6 8.73 � 10�6 5.57 � 10�6 6.71 � 10�6

E3 11.2 11.6 20.8 19.2
a3 6.40 � 10�6 7.16 � 10�6 6.00 � 10�6 5.58 � 10�6

E4 11 12.8 8.4 8.43
E5 7.28 7.12 4.2 4.3
E6 6.42 6.26 3.51 4.63
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Considering the above discussions, a set of important factors
was chosen, i.e. [q = 0.75, p = 5, N = 10, RF = 3], to construct the
PCE model and the SMA-PCE method. Finally, the SMA-PCE method
is compared with the classical method based directly on iterative
optimization. The following notations: SMA-FEM and BO-FEM,
specifically refer to the direct combination of SMA or BO with finite
element model, which is performed employing co-simulation in
MATLAB and ANSYS APDL, so that their total time can be simply
recorded directly in MATLAB.

It is worth mentioning that the total computation time of the
coupled algorithms in this paper is divided into two parts. (1) Part
1 is the time for building the ‘‘input–output” dataset of the PCE
model, so it is the same both for SMA-PCE and BO-PCE (2) Part 2
is the running time of the coupled algorithms in MATLAB.

The comparative results of the computational accuracy and effi-
ciency of the four methods are summarized in Table 4 and Fig. 14.
In addition, their parameter identification results are given in
Table 5, from which we can draw some conclusions as follows:

� Compared with BO-PCE and BO, SMA-PCE and SMA offer signif-
icant improvements, not only in terms of faster convergence
13
and better robustness, but also in terms of higher accuracy,
which is reflected in Fig. 14(a);

� In terms of computational cost, Table 4 and Fig. 14(a) show that
the computational time of the SMA-PCE method is nearly 52
times shorter than that of the SMA-FEM method.

� A further comparison between SMA-PCE and BO-PCE shows a
significant difference in Part 2, i.e., the former is almost 40 times
shorter than the latter. Although the difference in their total
computation time is not significant, it is sufficient to further
demonstrate the superiority of the SMA-PCE method.
6. Conclusions

Due to the uniqueness of their function and their large volumes,
dams are often built in high mountain and valley river sections.
These areas usually have complex geological and climatic condi-
tions, and with the variable operating conditions of the dams
themselves. Therefore, timely assessment of dam safety in a chang-
ing environment is a pressing challenge, and rapid parameter iden-
tification provides a feasible alternative to this dilemma.
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However, most classical parameter identification methods for
dams are based on an optimization algorithm directly combined
with the finite element model for iterative back-analysis, which
requires multiple invocations of the finite element model. Hence,
the computational efficiency of such methods is severely
restricted by the computational cost of the finite element model.
In this paper, the efficient and accurate PCE models are devel-
oped as a direct alternative to the computationally expensive
finite element models to predict their structural response in
real-time, and then coupled with the novel and powerful slime
mould algorithm. The proposed SMA-PCE method can be used
as an effective technique to rapidly identify the structural
unknown parameters, as demonstrated in the above two exam-
ples with different complexities. The general conclusions are
summarized as follows:

� In terms of constructing PCE models, the PCE models corre-
sponding to the univariate simply supported beam model are
much more accurate than the multivariate Dayakou arch dam
model. The same size ‘‘input–output” datasets (40 sets) are used
to construct the PCE model, the ErrLOO of the former is close to
1 � 10-6, while the ErrLOO of the latter is at most 1 � 10-3. This
is associated with the classical ‘‘curse of dimensionality” in
machine learning algorithms. Therefore, for the multi-
parameter identification problem, the predictive accuracy of
the surrogate model can be improved by appropriately increas-
ing the sample size.

� In multivariate models, the accuracy of the PCE model is closely
related to the truncation norm q and polynomial degree p. In
general, choosing the hyperbolic truncation scheme, q < 1, will
improve the accuracy of the PCE model, while increasing p is
not positively correlated with the accuracy of the PCE model.
So, in practical applications, the relatively optimal combination
of q and p should be chosen to construct a reliable PCE model for
predicting the structural response, which is a prerequisite for
the SMA-PCE method to identify the parameters.

� In terms of SMA, the number of search agents N and the search
boundary range factor RF have a significant impact on the con-
vergence speed as well as the accuracy of SMA-PCE. This feature
can be generalized to other population intelligence optimiza-
tion algorithms. In addition, SMA has faster convergence speed
and stronger robustness compared to the classical non-
population Bayesian optimization algorithm.

� In the example of the Dayakou arch dam model, compared with
traditional parameter identification methods, such as the SMA-
FEM method, the SMA- PCE method not only reduces the com-
putational time by more than 50 times, but also improves the
computational accuracy to a certain extent by choosing the suit-
able combination of important factors [p, q, N, RF ].

In summary, the SMA-PCE method presented in this paper com-
pensates for the low computational efficiency of traditional param-
eter identification methods without compromising computational
accuracy, and its application can be extended to other structures.
There are a few limitations and drawbacks to this algorithm:

� The initial ‘‘input–output” dataset for constructing the surro-
gate model is sourced from the initial computational model
(finite element model, etc.), since the efficiency of the entire
algorithm is greatly limited by the computational cost of the
initial computational model.

� Due to the classical ‘‘curse of dimensionality”, the predictive
performance of surrogate models in high-dimensional parame-
ter spaces will be greatly reduced, so that an appropriate
increase in modelling cost is essential in such problems.
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� The appropriate size of the initial design-of-experiment data-
sets (NDOE) used to construct the surrogate model are normally
unknown, and thus it is necessary to use different NDOE to con-
struct the surrogate model for comparison.

� The developed surrogate models are not interpretable, i.e. they
are not physics-informed.

Future studies can be focused on the following cases:

� Extend the proposed SMA-PCE algorithm in the identification
for structural dynamic parameters considering vibrations [51].

� Extend the proposed SMA-PCE algorithm for seismic analysis of
dams, in which the time history of the response parameter
needs to be estimated [52].

� Extend the proposed SASOI algorithm for time-varying models
such as aging and deterioration of dams [53].
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