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A B S T R A C T

Dynamic monitoring data plays an essential role in the structural health monitoring of dams. This study
presents a surrogate-assisted stochastic optimization inversion (SASOI) algorithm, a novel technique for static
and dynamic parameter identification. This algorithm is based on probabilistic finite element simulations and
Bayesian inference theory. It combines the advantages of low computational cost in surrogate models and
fast convergence in the Bayesian algorithm. Taking four cases of different complexity, this paper verifies the
effectiveness of the SASOI algorithm and validates its practicality for large dams. Surrogate models consider
several alternatives, including polynomial chaos expansion (PCE), Kriging, polynomial chaos Kriging, and
support vector regression. Implementation of the SASOI algorithm on dams shows that PCE outperforms
other techniques. This algorithm improves the accuracy and efficiency of the static parameter identification
methods by nearly 27 times compared to the classical inversion methods. Furthermore, the accuracy of dynamic
parameter identification is higher than that of static one. The SASOI algorithm is applicable to other large-scale
infrastructures.
1. Introduction

Dams are the main element of water conservancy infrastructure that
provides drinking water and is used for irrigation and power genera-
tion. Dam failure may cause loss of life for those who live in the dam
downstream and property loss. Therefore, the safe operation of dams
is an essential task in risk management [1]. One of the main elements
in safety monitoring and health diagnosis of dams is to determine the
physical parameters of the dam itself and the bedrock materials [2,3].

Parameter identification is an important task for structural health
monitoring and damage detection in concrete dams [4]. Different ma-
terial and structural properties change during the lifetime of the dams
which significantly affects the structural performance. Proper estima-
tion of these parameters is of great importance to ensure the safe
operation of dams. Parameter identification in dams is even more
complex because a large volume of concrete is typically used to build
a dam over the years with aggregates sought from different sources.
Moreover, the deterioration (or aging) rate varies at different dam
locations as a function of temperature, relative humidity, stress state,
etc. All these factors cause a non-homogeneous condition in which a
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limited number of concrete core samples cannot properly quantify the
true material properties. Parameter identification is, indeed, a low-cost
technique to estimate the unknown parameters in the numerical model
of a dam (such as concrete modulus of elasticity) using the known data
(i.e., measurements). The calibrate numerical model is then used for
health monitoring purposes.

The classical methods for parameter identification of dams are pri-
marily based on analytical or numerical displacement back analysis [5,
6]. This inversion method has an irreconcilable contradiction between
accuracy and efficiency and has a limited scope of application. The
classical methods are not applicable to dynamic dam response identifi-
cation. These classical methods mainly rely on an iterative approach to
change the material parameters in the finite element model to minimize
the error between numerical simulation and the field measurement [7].
This is, indeed, the extreme value optimization problem discussed
in Neuman et al. [8]. Generally, parameter identification is a multi-
peak, non-convex, and high-dimensional optimization problem. Finding
the global minima is typically challenging using the classical gradient
optimization algorithm. Therefore, many intelligent algorithms such as
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genetic, particle swarm, and Jaya algorithms are continuously applied
to parameter optimization inversion.

Most of these optimization algorithms are essentially an iterative
process to find the extreme points in which the numerical model needs
to be called many times [9]. Such a crude operation is problematic
for complex large-scale structures with a nonlinear response, such as
concrete dams. The calculation cost of a single process for a refined fi-
nite element model of a dam-reservoir-foundation system takes several
days, making the classical optimization algorithms inefficient to use. In
addition, the classical algorithms are mainly based on the deterministic
back analysis with engineering judgment or a few field experimental
data, which ignores the aleatory and/or epistemic uncertainty caused
by empirical judgment and measurement errors [10]. Therefore, it
is not easy to quantify the impact caused by the inherent random
characteristics of materials [11].

To avoid the shortcomings of the classical optimization algorithms,
a Bayesian optimization method is adopted in this paper [12]. The
Bayesian optimization method is an advanced and state-of-the-art tech-
nique in the field of hyperparameter optimization. Nearly all modern
hyper-parameter optimization techniques that yield high-quality results
in terms of efficiency and effectiveness are rooted in the basic idea
of Bayesian optimization. The Bayesian inversion method is based on
Bayesian optimization, which only needs a limited number of samples
to infer the maximum value of the likelihood function, to achieve the
purpose of parameter identification [13].

Surrogate modeling (a.k.a meta-modeling) attempts to offset the
increased costs of stochastic modeling by substituting the expensive
computational models (e.g., analytical formula or finite element mod-
els) with inexpensive-to-use surrogates models [14]. In recent years,
surrogate modeling has gained a lot of attention in parameter stochastic
optimization inversion. This method is typically coupled with evolu-
tionary optimization algorithms to establish a surrogate model (some-
times a black box) that can characterize the mapping relationship
between input parameters (with random characteristics) and the sys-
tem’s output (i.e., the quantity of interest — QoI) [15]. Surrogate
models may appear in different forms such as polynomial chaos expan-
sion (PCE) [16], Kriging (i.e., Gaussian process regression), and support
vector regression (SVR).

1.1. Applied PCE and Kriging for dams

PCE, Kriging, and polynomial chaos Kriging (PCK) have been widely
used in dam engineering. To the best of the author’s knowledge, the
first application was presented by Ghanem et al. [17] for static analysis
of embankment dams. Guo et al. [18,19] evaluated the sliding stability
of embankment dams using the sparse and adaptive PCE. Sevieri et al.
[10] presented a new probabilistic procedure to identify the model
parameters of the gravity dams based on a generalized PCE model
in a Bayesian framework. Hariri-Ardebili and Sudret [20] presented
the application of PCE in both analytical and numerical analyses of
concrete dams. They evaluated the stability of the 2D gravity dam,
seismic analysis of the 2D gravity dam, and also 3D frequency analysis
of arch dams. Amini et al. [21] extended this research for sensitivity
and reliability analysis of aging dams using the copula dependency
among the random variables (RVs).

Guo and Dias [22] presented a Kriging-based probabilistic analysis
of an earth dam which combined the Kriging model with the Monte
Carlo simulation (MCS), the global sensitivity analysis, and the first-
order reliability method. Kalinina et al. [23] applied the PCE to a
dam-break model, and uncertainty in the inputs was propagated to
the flow quantities downstream of the dam. Shahzadi and Soulaïmani
[24] combined the PCE with a deep neural network for sensitivity
and uncertainty propagation in rockfill dams. Hariri-Ardebili et al.
[25] combined the PCE method with random forests for sensitivity
analysis of symmetry and asymmetry arch dams and to identify the
2

most critical locations. Sevieri et al. [26] developed a hierarchical
Bayesian framework for uncertainty reduction in the seismic fragility
analysis of concrete gravity dams using general PCE and Markov Chain
Monte Carlo.

Apart from the analysis of existing dams, the PCE, Kriging, and
PCK have been used to design a new dam. Fengjie and Lahmer [27]
combined the genetic algorithm with adaptive Kriging MCS for arch
dam shape optimization. Wang et al. [28,29] proposed an optimization
algorithm combination of the genetic algorithm and an updated Kriging
surrogate model for gravity and arch dams. Abdollahi et al. [30]
proposed an uncertainty-aware dynamic shape optimization based on
a two-stage adaptive Kriging-assisted quantile-based design algorithm.

1.2. Application of SVR on dams

Support vector regression has been adopted for different response
prediction models in dam engineering. Su et al. [31,32] implemented
SVR for early-warning dam safety assessment. Ranković et al. [33]
developed an SVR-based identification model for the prediction of dam
structural behavior. Tabari and Sanayei [34] used the SVR model to
predict the intermediate block displacement of the dam crest. Chen
et al. [35] proposed a time-varying identification model for crack mon-
itoring data from concrete dams based on SVR and the Bayesian frame-
work. Hariri-Ardebili and Pourkamali-Anaraki [36] applied the SVR for
reliability analysis of concrete dams using both the simplified method
and the nonlinear numerical simulations. Lin et al. [37] compared SVR
with other soft computing methods to develop a forecasting model for
dam deformation. Zhou et al. [38] applied the SVR for seismic fragility
analysis of high concrete-faced rockfill dams. Ren et al. [39] developed
a multiple-point monitoring model for dam displacements based on
correlated multiple-output SVR.

1.3. Parameter identification in dams

Su et al. [40] used the genetic simulated annealing algorithm to
identify the mechanical parameters of the dam and its foundation. The
results proved the efficiency and robustness of the algorithm. Karimi
et al. [41] used an artificial neural network coupled with finite element,
and boundary element approaches for system identification of concrete
dams. Chen et al. [42] adapted the improved cuckoo search algorithm
and the improved particle swarm optimization to adjust the mechanical
parameters and identify the dam-zoning elasticity modulus for the
heightened concrete dam. Yang et al. [43] established the statistical
model of dam deformation monitoring data based on the backward
elimination partial least squares and then adapted the improved parti-
cle swarm optimization to identify the elastic modulus of the dam body
and foundation rock. Fedele et al. [44] applied ten separate artificial
neural networks to inverse ten elastic moduli of the dam body and
bedrock. To enhance noise robustness, artificial noise was added to the
training samples.

Static monitoring data (e.g., static displacement and temperature) is
typically used for parameter identification in concrete dams. Kang et al.
[45] proposed a kernel extreme learning machine-based accelerated
Jaya algorithm to minimize the objective function of dam material
parameter identification. Liu et al. [46] proposed a parameter opti-
mization inversion method based on unconstrained Lagrangian SVR
and cultural genetic algorithm. They applied this technique to optimize
the zoned elasticity module of a high arch dam in its initial impound
period. Bao et al. [47] adopted a multi-output least-squares SVR ma-
chine combined with an improved differential evolution algorithm to
estimate multiple mechanical parameters of the Jinping-I arch dam.
The proposed algorithm outperformed four other methods.

With rapid development in structural dynamic response identifica-
tion technology, information regarding the vibration mode has been
used to identify the overall mechanical characteristics of the struc-

tures [48]. Li et al. [49] proposed a stochastic optimization inversion
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method for dynamic parameters of high arch dams based on the re-
sponse surface model and genetic algorithm. The vibration tests were
performed on a prototype arch dam during flooding, and the dynamic
elastic modulus of the dam and foundation were estimated. Kang et al.
[50] proposed a method based on the Kriging and Jaya algorithm
to identify the dynamic parameters of concrete dams rapidly and
compared it with traditional particle swarm optimization and genetic
algorithms. Liu et al. [51] computed the first three major frequencies
and the basic modal shapes of the dam from the acceleration response
induced by the underwater explosion and used them to construct
an objective function. The dynamic elastic modulus of the dam was
identified based on the SVR.

1.4. Contributions and objectives

As discussed before, the conventional parameter identification
method has a limited scope of application and is not applicable to
dynamic response identification. While using Bayesian optimization for
parameter identification yields high-quality results, it is still a very
demanding procedure, especially for complex infrastructures like dams.
This shortcoming necessitates the application of surrogate models. Most
of the literature mentioned above only uses one surrogate model within
the optimization algorithm to identify the unknown parameters of the
structure. There is no previous comprehensive research on such an
integrated model’s importance, accuracy, and efficiency in parameter
identification.

In this paper, we propose a novel technique that combines (a) an
inversion algorithm, (b) Bayesian optimization, and (c) surrogate mod-
els for the parameter identification of structural systems. The proposed
hybrid framework is applicable to both static and dynamic systems.
Another novelty of this work relies on integrating four surrogate mod-
els within the proposed framework that increases the accuracy and
reliability of the results. To the best of the author’s knowledge, and
following the extensive literature review in the previous sections, this
is the first study that addresses the rapid identification of static and
dynamic mechanical parameters of concrete dams in the context of
multiple surrogate models combined with Bayesian inversion theory.

The main objective of this study is to answer the following ques-
tions: (1) How to develop an accurate and efficient surrogate model to
replace the fine-grid numerical model? (2) How to determine the most
optimal surrogate model? (3) How to combine a surrogate model with
Bayesian inference to accelerate the unknown parameter identification
in the concrete dam? and (4) What are the main advantages of the
SASOI algorithm compared to the classical iterative-based optimization
inversion method?

To adequately address these questions, four different case stud-
ies are discussed, which cover the following aspects: (1) comparing
the problems with explicit function vs. black-box-type models, (2)
comparing the static vs. dynamic simulations, (3) comparing the sim-
plified analytical models vs. advanced stochastic simulations, and (4)
comparing the numerical simulation with experimental results.

A brief review of the selected surrogate models and the Bayesian
inversion theory is provided in Section 2 for those readers who are
less familiar with these concepts. A detailed description of the general
procedures and characteristics of the SASOI algorithm is presented in
Section 3 and the indicators and benchmarks for algorithm evaluation
are in Section 4. Then, the static and dynamic parameters identification
of dams using the SASOI algorithm are presented in Section 5, followed
by conclusions in Section 6.

2. Underpinning theories of SASOI

2.1. Surrogate models

2.1.1. Polynomial chaos expansion
The classic PCE was first introduced by Wiener [52]. The key

concept of PCE is to expand the model response onto a basis consisting
3
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of multi-variate polynomials, which are orthogonal with respect to the
joint distribution of the input variables. In this setting, characterizing
the response probability density function (PDF) is equivalent to evaluat-
ing the PCE coefficients [53]. There are multiple strategies to calculate
the PCE coefficients, which might be divided into intrusive or non-
intrusive approaches. Consider a 𝑀 dimensional random vector with
independent components 𝑿 =

{

𝑋1, 𝑋2,… , 𝑋𝑀
}

described by the joint
PDF 𝑓𝑿𝑖

, 𝑖 = 1, 2,… ,𝑀 . Thus, the scalar QoIs resulting from this system
is also a random variable, denoted 𝑌 = (𝑿). Knowing that 𝑌 has a
finite variance, it can be represented as a PCE [54]:

𝑌 = (𝑿) =
∑

𝜶∈N𝑀
𝜁𝜶𝜓𝜶(𝑿) (1)

here 𝜶 =
{

𝛼1,… , 𝛼𝑛
} (

𝛼𝑖 ≥ 0
)

∈ N𝑀 is the multidimensional index
otation vector that identifies the components of the multivariate
olynomials 𝜓𝜶 and the 𝜁𝜶 ∈ R are the expansion coefficients to

be determined. 𝜓𝜶(𝑿) =
∏𝑀

𝑖=1 𝜙
(𝑖)
𝛼𝑖

(

𝑥𝑖
)

are multivariate polynomials
orthonormal with respect to 𝑓𝑿 , among them, 𝜙(𝑖)

𝜶𝑖 is the univariate
orthogonal polynomial in the 𝑖th variable of corresponding polynomial
egree 𝜶𝑖.

In real-world problems, the truncated form of Eq. (1) is used as
ollows:

(𝑿) ≈ 𝑃𝐶𝐸 (𝑿) =
∑

𝜶∈
𝜁𝜶𝜓𝜶(𝑿) (2)

here  ∈ N𝑀 is the truncation set of multi-indices of cardinality
. There are two main truncation schemes, i.e., standard and hyper-
olic [55]. The former one corresponds to all polynomials in the 𝑀
nput variables of total degree less than or equal to 𝑝:

𝑀,𝑝 =
{

𝜶 ∈ N𝑀 ∶ |𝜶| ≤ 𝑝
}

card 𝑀,𝑝 ≡ 𝑃 =
(

𝑀 + 𝑝
𝑝

)

=
(𝑀 + 𝑝)!
𝑝!𝑀!

(3)

A modification of the standard scheme, the hyperbolic truncation
scheme makes use of the parametric 𝑞 to define the truncation:

𝑀,𝑝,𝑞 =
{

𝜶 ∈ 𝑀,𝑝 ∶ ‖𝜶‖𝑞 ≤ 𝑝
}

, ‖𝜶‖ =

( 𝑀
∑

𝑖=1
𝛼𝑞𝑖

)1∕𝑞

(4)

where using 𝑞 = 1, the hyperbolic truncation yields the standard trunca-
tion scheme in Eq. (3). For 𝑞 < 1, hyperbolic truncation includes all the
igh-degree terms in every single variable, but high-order interaction
erms should be avoided to the extent possible. An illustration presents
set of 2D hyperbolic truncation with varying 𝑝 and 𝑞 can be found

in Hariri-Ardebili and Sudret [20].
The infinite series in Eq. (1) can be written as a sum of its truncated

version Eq. (2) and a residual:

𝑌 = (𝑿) =
𝑃−1
∑

𝑗=0
𝜁𝑗𝜓𝑗 (𝑿) + 𝜀𝑝 ≡ 𝜻𝑇𝜓(𝑿) + 𝜀𝑝 (5)

where 𝑃 is defined based on Eq. (3), 𝜀𝑝 is the truncation error, and su-
erscript 𝑇 means transpose, 𝜻 =

{

𝜁0,… , 𝜁𝑃−1
}⊤ is a vector containing

the coefficients and 𝜓(𝑿) =
{

𝜓0(𝑿),… , 𝜓𝑃−1(𝑿)
}⊤ is the vector that

ssembles the values of all the orthonormal polynomials in 𝑿.
There are multiple techniques to find the expansion coefficients

n Eq. (1). The least angle regression (LAR) algorithm uses low-rank
runcation schemes. It aims to find coefficient vectors with only a few
on-zero entries (i.e., sparse solutions), while the other coefficients are
et to zero [56]. The LAR algorithm can be formulated by expanding
he least square minimization and adding a penalty term 𝜆‖𝜻‖1 as:

̂ = arg min
𝜻∈R𝑃

E
[

(𝜻𝑇𝜓(𝑿) − 𝑌 )2
]

+ 𝜆‖𝜻‖1 (6)

here ‖𝜻̂‖1 =
∑

𝜶∈
|

|

𝜁𝜶|| is the regularization term that forces the
inimization to favor low rank solutions.
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2.1.2. Kriging
Sacks et al. [57] introduced the concept of Kriging, which was used

to represent an input/output mapping of an expensive computational
model in the context of a surrogate model. Santner et al. [58] presented
an in-depth introduction to Kriging as a meta-modeling tool. Dubourg
et al. [59] summarized the common type of Kriging as simple Kriging,
ordinary Kriging, and Universal Kriging. The first two are special cases
of universal Kriging. The universal Kriging aims to find the best linear
unbiased predictor while minimizing the prediction’s mean square
error. This is composed of a polynomial term used for global trend
prediction and a Gaussian process term used for local deviation regres-
sion. In addition, the correlation function (i.e., kernel or covariance
function) is a crucial ingredient for a Kriging model since it contains
the assumptions about the approximation function and controls the
smoothness of the Kriging model. Lataniotis et al. [60] introduced some
typical one-dimensional correlation functions like linear, exponential,
Gaussian, and Matérn.

Again, suppose that the model output 𝑌 = (𝒙) is a realization of
Gaussian process indexed by 𝒙 ∈ 𝑿 ⊂ R𝑀 . A Kriging meta-model

can be expressed as Lataniotis et al. [61]:

𝑌 ≈ 𝐾 (𝒙) = 𝜷𝑇 𝑓 (𝒙) +𝑍(𝒙, 𝜔) (7)

here 𝜷𝑇 𝑓 (𝒙) is the mean value (i.e., trend) of the Kriging model, 𝜷
epresents the regression coefficient vector, 𝑓 (𝒙) =

[

𝑓1(𝒙),… , 𝑓𝑀 (𝒙)
]

s the polynomial basis function. In addition, 𝑍(𝒙, 𝜔) is a zero mean,
nit variance, stationary Gaussian process, and its covariance function
s defined as:

ov
(

𝑍
(

𝒙𝒊
)

, 𝑍
(

𝒙𝒋
))

= 𝜎2 𝑅
(

𝒙𝒊,𝒙𝒋 ;𝜽
)

(8)

here 𝜎2 is the (constant) variance of Gaussian process 𝑍(𝒙, 𝜔), and
(

𝒙𝒊,𝒙𝒋 ;𝜽
)

is the correlation function which describes the ‘‘similarity’’
etween two observations with hyper-parameters 𝜽 =

[

𝜃1,… , 𝜃𝑛
]𝑇 . The

atérn-5/2 correlation function is selected in this study [61].
For  =

{


(

𝑥(1)
)

,… ,
(

𝑥(𝑁))}𝑇 which is assumed to follow a
ultivariate Gaussian distribution, the unknown Kriging parameters
=

(

𝜷, 𝜎2,𝜽
)

can be estimated by maximizing the likelihood function
s:

(𝛾;) =
(det 𝑪)−1∕2

(2𝜋)𝑁∕2
exp

[

−1
2
( − 𝑭𝜷)𝑇𝑪−1( − 𝑭𝜷)

]

(9)

where the covariance matrix 𝑪 = 𝜎2𝑹+𝛴𝑛 sums up the covariance ma-
trix of the Gaussian processes and noisy response; 𝑭 =

[

𝑓
(

𝒙1
)

,… , 𝑓
(

𝒙𝑁
)]𝑇

s the observation (design) matrix of the Kriging metamodel trend.
Taking the partial derivative of the log-likelihood function with re-

pect to 𝜷 and 𝜎2 to zeros, the hyper-parameters 𝜽 can be obtained from
olving the optimization problem in Eq. (10). This optimization prob-
em can be solved using the covariance matrix adaptation-evolution
trategy (CMA-ES). This is a de-randomized stochastic search algorithm
ntroduced by Hansen and Ostermeier [62].

̂ = arg min
𝜽=𝜽

[− log(𝜽;)] (10)

.1.3. Polynomial chaos Kriging
PCK is a state-of-the-art non-intrusive surrogate modeling approach

hat combines the advantages of PCE and Kriging: the regression-type
CE captures the global behavior of the computational model, whereas
he interpolation-type Kriging approximates local variations [63]. A
etailed derivation of the PCK surrogate model can be found in Schobi
t al. [64].

PCK can be interpreted as a universal Kriging model with a specific
rend that composes a set of orthonormal polynomials [63]:

≈ 𝑃𝐶𝐾 (𝒙) =
∑

𝜶∈
𝛽𝜶𝜓𝜶(𝑿) + 𝜎2𝑍(𝒙, 𝜔) (11)

here ∑

𝜶∈ 𝛽𝜶𝜓𝜶(𝑿) is a weighted sum of orthonormal polynomials
escribing the trend of the PCK model, 𝜎2 and 𝑍(𝒙, 𝜔) denote the
ariance and the zero mean, unit variance, stationary Gaussian process.
4

The construction of the PCK model is mainly divided into the fol-
owing two parts: (1) determination of the truncated set of polynomials
ontained in the trend, and (2) calibration of the unknown Kriging
arameters

(

𝜷, 𝜎2,𝜽
)

. These two parts can be combined in various
ways, of which the most commonly used methods are sequential PCK
(SPCK) and optimal PCK (OPCK) [63]. The former is adopted in this
study. In SPCK, the set of polynomials and the Kriging surrogate model
are determined sequentially. In the first step, the truncated set of
polynomials  in Eq. (2) is determined by sparse PCE based on LAR
selection. Then, the truncated set  is embedded into Eq. (11) as a
trend that composed of 𝑃 = || regressors. Finally, the PCK surrogate

odel is calibrated as a universal Kriging model.

.1.4. Support vector regression
SVR was developed based on statistical learning theory by Vapnik

65]. The core idea is to use kernel functions to project the original data
nto high-dimensional feature space and search for the best prediction
unction in linear feature space. A large group of kernel functions can
e used including non-stationary linear, polynomial, sigmoid, Gaus-
ian, exponential, Matérn-3/2 and Matérn-5/2 [57,66]. This allows
he SVR model to have significant generalization ability and nonlinear
roblem-handling capability, largely circumventing the over-fitting of
he data.

Consider some pairs of inputs 𝒙 ∈ 𝑿 ⊂ R𝑀 and outputs 𝒚 =
(𝒙) ∈ R given an experimental design  =

{

𝑥1,… , 𝑥𝑛
}

and the cor-
esponding model responses  =

{


(

𝑥(1)
)

,… ,
(

𝑥(𝑁))}𝑇 , a linear
SVR model is formulated as:

𝑆𝑉 𝑅(𝒙) = 𝝎𝑇 𝒙 + b =
𝑁
∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

𝒙𝑇𝑖 𝒙 + b (12)

where 𝝎 =
∑𝑁
𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

𝒙𝑖 ∈ R𝑛 is a vector of weight coefficient, 𝛼𝑖 ≥ 0
and 𝛼∗𝑖 ≥ 0 are Lagrange multipliers, and 𝑏 ∈ R is an offset parameter
to be estimated.

For nonlinear problems, the input variables are mapped into a high
or infinite dimensional feature space by the nonlinear transform 𝒙 →
𝜑(𝒙). In this space, the linear prediction function in Eq. (12) can be
xtended as follows:

𝑆𝑉 𝑅(𝒙) = 𝝎𝑇𝜑(𝒙) + b =
𝑁
∑

𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

𝜑
(

𝒙𝑖
)𝑇 𝜑(𝒙) + b (13)

where the inner product 𝜑
(

𝒙𝑖
)𝑇 𝜑(𝒙) is the so-called kernel function

𝑘
(

𝒙𝑖,𝒙
)

.
Lagrange multipliers 𝛼𝑖 and 𝛼∗𝑖 are computed by maximizing the

Lagrangian function:

𝐿 (𝜶,𝜶∗) = − 1
2
∑𝑁
𝑖=1

∑𝑁
𝑗=1

(

𝛼𝑖 − 𝛼∗𝑖
)

(

𝛼𝑗 − 𝛼∗𝑗
)

𝑘
(

𝒙𝑖,𝒙𝑗
)

−
∑𝑁
𝑖=1

(

𝛼𝑖 + 𝛼∗𝑖
)

𝜀 +
∑𝑁
𝑖=1

(

𝛼𝑖 − 𝛼∗𝑖
)

𝑦𝑖
s.t. ∑𝑁

𝑖=1
(

𝛼𝑖 − 𝛼∗𝑖
)

= 0 and 0 ≤ 𝛼𝑖, 𝛼∗𝑖 ≤ 𝐶, 𝑖 = {1,… , 𝑁}

(14)

where 𝐶 ∈ R+ is a regularization parameter for the regression problem,
𝜀 is the insensitive tube width which provides SVR with its sparsity
property.

The Gaussian kernel is selected in this study which is the most
popular form:

𝑘
(

𝒙𝑖,𝒙
)

= exp

(

−
‖

‖

𝒙𝑖 − 𝒙‖
‖

2

2𝜎2

)

(15)

where 𝜎 > 0 is the hyper-parameter of the kernel function.
Once a kernel is chosen, the most important step is to properly fit

the hyper-parameters 𝛾 = {𝐶, 𝜀, 𝜎}𝑇 that lead to the most accurate
model in terms of generalization. CMA-ES is adopted to calibrate the
SVR model to find the hyper-parameters’ optimal values similar to the
Kriging models.
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2.2. Bayesian inversion

In some cases, the unknown parameters in the system cannot be di-
rectly measured, or they do not have a clear physical meaning. In such
a case, the inverse problem helps estimate those parameters indirectly
from the experimental data. In the inverse problems, the information
about the observations is propagated back to the computational model
to obtain insight into the input parameters [67].

Most of the Bayesian inverse problems share the same ingredi-
ents [68,69]: a computational forward model , a set of input param-
eters 𝒙 ∈ 𝑿 that need to be inferred, and a set of QoIs 𝒚. Assuming
that the random input parameters vector  =

{

𝒙1,… ,𝒙𝑛
}

cannot be
measured directly, we can only resort to measuring the QoIs. Let us
consider 𝑁 independent measurements 𝒚𝑖 are available and gathered
in a data set  def=

{

𝒚1,… , 𝒚𝑁
}

. Since the forward model 𝒙 ↦  is
based on several simplifications, a discrepancy term needs to be added
to the computational model as 𝒚 = (𝒙) + 𝜀. In practice, 𝜀 ∈ R𝑁out

represents the effects of measurement error and model inaccuracy and
can be assumed to be an additive Gaussian discrepancy with zero mean
value and unknown variance 𝜎2.

In this setting, the unknown parameter vector 𝒙 consists of two
parts, i.e., computational forward model parameters 𝒙 and discrep-
ancy parameters 𝒙𝜀. Assuming that the two parts as being priorly
independent, and a priori distribution 𝜋

(

𝒙𝜀
)

for the unknown variance
𝜎2 can be obtained, then their joint prior distribution can be formulated
as:

𝜋(𝒙) = 𝜋
(

𝒙
)

𝜋
(

𝜎2
)

(16)

The likelihood function can thus be written as:


(

𝒙, 𝜎2;
)

=
𝑁
∏

𝑖=1

1
√

(

2𝜋𝜎2
)𝑁out

exp
(

− 1
2𝜎2

(

𝒚𝑖 −
(

𝒙
))T (𝒚𝑖 −

(

𝒙
))

)

(17)

Based on the prior distribution in Eq. (16) and likelihood function
in Eq. (17), the corresponding posterior distribution can be formulated
as:

𝜋
(

𝒙, 𝜎2 ∣ 
)

= 1
𝑍
𝜋
(

𝒙
)

𝜋
(

𝜎2
)


(

𝒙, 𝜎2;
)

,

𝑍 = ∫


(

𝒙, 𝜎2;
)

𝜋(𝒙)𝑑𝒙 (18)

here the normalizing factor 𝑍, known as the evidence or marginal
ikelihood, shall ensure that this distribution integrates to 1.

The posterior distribution summarizes the updated information
bout the unknown parameters

(

𝒙,𝒙𝜀
)

based on the prior knowledge
nd the observed data, which is often characterized through its first
tatistical moments. The posterior mean vector, as well as the posterior
ovariance matrix (i.e., quantified uncertainty), are:

[𝑿 ∣ ] = ∫𝑿

𝒙𝜋(𝒙 ∣ )d𝒙 (19)

ov[𝑿 ∣ ] = ∫𝑿

(𝒙 − E[𝑿 ∣ ])(𝒙 − E[𝑿 ∣ ])T𝜋(𝒙 ∣ )d𝒙 (20)

. Proposed parameter identification algorithm: SASOI

The procedure of the proposed SASOI algorithm for concrete dams
nvolves the following main steps:
Step A: Set probabilistic input priori model: Considering that the

nput parameters to be identified are difficult to measure, the stochastic
heory is introduced to reduce the epistemic uncertainties related to the
echanical parameters of the materials. According to the properties

f the input parameters, a suitable distributional model is selected
5

or each one. Then, taking the empirical judgment value, or a few
Fig. 1. Proposed SASOI flowchart for concrete dams; Step C is based on Section 2.1;
Step D is based on Section 2.2; Step E uses formulation in Section 3.1.

measured values as the mean value of the distribution function and
given the variance, the probabilistic input prior model of the unknown
parameters can be constructed.

Step B: Choose a design of experiment (DOE): To construct the
urrogate model, we first need to conduct an experimental design.
here are many types of sampling techniques available for experimental
esign. In this study, the Latin hypercube sampling (LHS) method is
elected, which has the advantages of uniformity and efficiency and
s widely used in constructing a surrogate model. After generating a
ertain number of parameter space sample sets based on Step A and
he LHS method, the probabilistic finite element analyses are performed
o create the response space sample set. Finally, the sample spectrum
f the structural system is constructed based on the above two sample
ets.
Step C: Construct and evaluate the surrogate model: The surrogate

odel is constructed based on the parameter space sample sets and
he response space sample sets generated in Step B. The accuracy
f the surrogate model is evaluated by leave-one-out (LOO) cross-
alidation error, 𝐸𝑟𝑟𝐿𝑂𝑂. This paper compares four surrogate modeling

technologies (i.e., PCE, Kriging, PCK, and SVR).
Step D: Surrogate-assisted accelerated Bayesian inversion: The core

of this step is to substitute the original high computational cost calcula-
tion (i.e., numerical) model with a cost-effective yet accurate surrogate
model. The predicted QoIs of the surrogate model should be consistent
with those from original finite element analyses, verified in the pre-
vious step. Next, the predicted QoIs by surrogate models are used to
accelerate the Bayesian inference and estimate the Bayesian posterior
mean of the input parameters.

Step E: Compare and evaluate the accuracy of the inversion algo-
rithm: The original calculation model is updated based on the structural
parameters estimated in step D. These values are then compared with
the updated QoIs from measured or experimental observations.

This paper aims to establish a general procedure that rapidly iden-
tifies concrete dam parameters based on the SASOI algorithm through
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the five steps above. This study will demonstrate the efficiency and
accuracy of this algorithm and its feasibility through several simple-
to-complex case studies. In the context of computational modeling and
uncertainty quantification, inverse problems are the main classes of
applications that benefit from Bayesian inference. Following the generic
framework introduced by Nagel and Sudret [70],Wagner et al. [71],
Fig. 1 illustrates a flowchart for the SASOI algorithm with application
in dams.

The overall goal of this section is to answer two important questions:
(1) Can the surrogate model be used as an alternative to the calculation
model, that is, the accurate evaluation of the surrogate model; if yes, (2)
How accurate is the SASOI algorithm? and how much computational
time/cost can be saved using this algorithm? These questions are
addressed based on the metric in Section 3.1.

3.1. Metrics to evaluate SASOI

For the first problem, the 𝐸𝑟𝑟𝐿𝑂𝑂 is selected to evaluate the accu-
racy of the surrogate model in this study, which is profitable to compare
the performance of different surrogate models when evaluated on the
same validation set [16]. First, only a single DOE point is retained
at a time, and then, a meta-model 𝑚𝑒𝑡𝑎∖𝑖 is constructed based on a
reduced experimental design ∖𝒙(𝑖) =

{

𝒙(𝑗), 𝑗 = 1,… , 𝑁, 𝑗 ≠ 𝑖
}

. Finally,
comparing its prediction on the excluded point, 𝒙(𝑖) with the real value
𝒚(𝑖), the error is calculated as:

𝐸𝑟𝑟𝐿𝑂𝑂 =
∑𝑁
𝑖=1

(


(

𝒙(𝑖)
)

−𝑚𝑒𝑡𝑎⧵𝑖 (𝒙(𝑖)
))2

∑𝑁
𝑖=1

(


(

𝒙(𝑖)
)

− 𝜇̂𝑌
)2

(21)

here 𝜇̂𝑌 = 1
𝑁

∑𝑁
𝑖=1 

(

𝒙(𝑖)
)

is the sample mean of the experimental
design response.

The answer to the second question will be achieved by compar-
ing the error between updated prediction QoIs and experimental or
measured observation. Two error validation metrics are used in this
paper including root mean square error (RSME) and mean absolute
percentage error (MAPE):

RMSE =

(

1
𝑁

𝑁
∑

𝑘=1

(

𝑦𝑘 − 𝑦𝑘
)2
)1∕2

(22)

MAPE = 100
𝑁

𝑁
∑

𝑘=1

|

|

𝑦𝑘 − 𝑦𝑘||
𝑦𝑘

(23)

4. Validation of SASOI by simple benchmark problems

This section presents two basic benchmark problems to validate
the SASOI algorithm for static and dynamic parameter identification
situations: (1) a simply-supported beam and (2) a cantilever aluminum
plate. The first example has an accurate analytical solution, and the
second one benefits from experimentally measured values.

4.1. Static parameter identification of a beam

4.1.1. Construction of static parameter prior distribution space
This example evaluates the mid-span deflection of a simply-

supported beam subjected to uniformly distributed load 𝑝 = 12,000
N/m. The beam has a rectangular cross-section of width 𝑏 = 0.15 m,
height ℎ = 0.30 m, and length 𝐿 = 5.0 m. The beam consists of
uniform material with a modulus of elasticity, 𝐸. The input parame-
ters (𝑏, ℎ, 𝐿, 𝑝) are considered known parameters that obey a constant
distribution. However, the 𝐸 is assumed to be unknown input pa-
rameters with a lognormal distribution, and its prior distribution is
𝐿𝑁(30, 4.5) GPa. According to the beam theory, the analytical expres-
sion for the mid-span deflection of a simply-supported beam is 𝑉𝑚𝑖𝑑 =
5 𝑝𝐿4

32 𝐸𝑏ℎ3 . This simple formula serves as the original calculation model
nd connects the unknown modulus of elasticity to the measurable
id-span deflection.
6

The best source to guess the initial distribution of an unknown
parameter is to use the data in the literature that already has been
calibrated to the experimental tests [72]. Two types of distributional
models are widely used in structural engineering (in general) and
dam engineering (in particular): truncated normal distribution, and the
lognormal distribution. The former one has the highest entropy and is
the simplest choice in case there is no evidence so far on experimental
results [73,74]. The latter model is more reasonable for mechanical
properties of the material (e.g., mass density) as the lower tail is
bounded to zero which indicates a physical property cannot take a
negative value [75].

A set of 𝑁 = 5 independent experiments are carried out on this
beam, and the measurements are [71]: 12.84, 13.12, 12.13, 12.19, and
12.67 mm. Due to measurement error, the measured deflections vary
across experiments. We can calculate the mean of mid-span deflection
as 𝑉 𝑚𝑖𝑑 = 12.59 mm. The corresponding modulus of elasticity from the
analytical solution is 𝐸̄ = 22.98 GPa.

4.1.2. Results and discussions
This section presents the results of the surrogate model and parame-

ter identification based on the SASOI algorithm in the simply-supported
beam model. The unknown input parameter is sampled 𝑁𝑠𝑖𝑚 times by
the LHS method, and the corresponding QoI(s) are extracted using the
original calculation model. The data set for constructing the surrogate
model consists of two parts: the data set for the design of the exper-
iment, 𝑁𝐷𝑂𝐸 , and the data set for validation, 𝑁𝑣𝑎𝑙, both belong to a
subset of 𝑁𝑠𝑖𝑚.

All surrogate model construction and Bayesian inference have been
carried out with the open-source software UQLab [76], which allows
for easy reproducibility. The numerical computing environment in this
study is based on a high-performance UNIX workstation, which has
two nodes; each node has 36-core CPU and 192 GB of memory. The
calculation software adopts MATLAB [77] and ANSYS APDL [78] and
calls 12-core CPU to perform the probabilistic FE analysis.

Intuitively, for larger 𝑁𝐷𝑂𝐸 , a more accurate surrogate model is
expected. As a rule of thumb, the surrogate model can be a perfect alter-
native for the original computational model when its accuracy reaches
1𝑒−3. While higher accuracy (i.e., smaller error term) is desirable, it
may not be beneficial/efficient from a computational cost point of view.
Therefore, keeping the surrogate model balanced in terms of accuracy
and cost is essential.

Different surrogate models are constructed with varying 𝑁𝐷𝑂𝐸 and
fixed 𝑁𝑣𝑎𝑙 in this study to explore the optimal value needed to be
used for surrogate models. A total of 𝑁𝑠𝑖𝑚 = 100 initial samples are
drawn for the unknown parameter 𝐸 using the LHS method, and
the corresponding mid-span deflections 𝑉𝑚𝑖𝑑 are then calculated. For
each of the surrogate algorithms, six meta-models are constructed with
different sizes of 𝑁𝐷𝑂𝐸 (i.e., 5, 10, 20, 30, 40, and 50) and the same
size of 𝑁𝑣𝑎𝑙. This results in 24 surrogate models (i.e., four techniques
and six sample sizes). In each case, the 𝐸𝑟𝑟𝐿𝑂𝑂 is shown in Fig. 2(a),
and the following observations can be drawn:

• While the error term 𝐸𝑟𝑟𝐿𝑂𝑂 for the SVR model decreases with
the increase of 𝑁𝐷𝑂𝐸 , the required accuracy (i.e., less than 5%)
is not achieved until 𝑁𝐷𝑂𝐸 = 30.

• Aside from the SVR meta-model, the other three surrogate models
have very high accuracy for the entire range of 𝑁𝐷𝑂𝐸 . The
accuracy of PCE and PCK is better than the Kriging-only model.

• For SVR and Kriging surrogate models, increasing the size of
𝑁𝐷𝑂𝐸 increases the accuracy continuously. For the PCE and PCK
surrogate models, there is a clear drop from 𝑁𝐷𝑂𝐸 = 5 to 10;
however, 𝐸𝑟𝑟𝐿𝑂𝑂 is small enough that the meta-model reaches
saturation and does not change for 𝑁𝐷𝑂𝐸 greater than 10. One
may note that this is an elementary analytical study with only
one unknown variable.
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Fig. 2. Simply-support beam example with variable 𝑁𝐷𝑂𝐸 , four surrogate algorithms, and multiple assumed distributional models.
Fig. 3. Experimental setup for modal analysis of a cantilever aluminum plate.
Next, the developed surrogate models are integrated into the SASOI
algorithm for parameter identification of simply-support beam with
accelerated Bayesian inference of the unknown parameter 𝐸. Using the
obtained 𝑉 𝑚𝑖𝑑 , the relative error is computed, and the accuracy of the
SASOI algorithm is evaluated. Once the SASOI algorithm is combined
with each of the four surrogate models, the following notations specify
each combination: PCE_SOI, Kriging_SOI, PCK_SOI, and SVR_SOI. The
results are shown in Fig. 2(b) and Table 1 with the following major
observations:

• There is no positive correlation between the accuracy of the
SASOI algorithm and the accuracy of its corresponding surrogate
model. According to Fig. 2(a), the SVR surrogate model had
unreliable accuracy for 𝑁𝐷𝑂𝐸 < 30; however, the accuracy of
SVR_SOI is still comparable to the other three.

• The robustness of the PCE_SOI algorithm is better than the other
three since the posterior value of parameter 𝐸 and mid-span
deflection 𝑉𝑚𝑖𝑑 tend to be constant for 𝑁𝐷𝑂𝐸 ≥ 10.

• Although there are some differences in the accuracy of the SASOI
algorithms, the accuracy varies 2%–5% in all cases, which meets
the acceptance criteria for this simple structure.

While the unknown parameter in this example, 𝐸, was assumed to
follow a Lognormal distribution, it is interesting to see if the choice of
initial distributional model is important in the SASOI algorithm. For
this purpose, four other distributional models are also tested, i.e., Nor-
mal, Gamma, Weibull, and Gumbel. All five distributional models are
used in conjunction with the PCE model only because it is the best
surrogate model. Fig. 2(c) shows the variation of 𝐸𝑟𝑟𝐿𝑂𝑂 as a function
of 𝑁𝐷𝑂𝐸 . As seen, there is no meaningful difference among the results
which indicates the SASOI is nearly independent of the choice of initial
distributional model. Indeed, the original Lognormal model shows a
slightly better error metric at 𝑁 = 20 compared to the other four.
7

𝐷𝑂𝐸
Table 1
Comparison of the relative error between the posterior value of 𝑉𝑚𝑖𝑑 and its measured
mean 𝑉 𝑚𝑖𝑑 in [mm].
𝑁𝐷𝑂𝐸 5 10 20 30 40 50

PCE_SOI 12.22 12.19 12.19 12.19 12.19 12.19
2.90% 3.18% 3.18% 3.18% 3.18% 3.18%

Kriging_SOI 12.27 12.15 12.2 12.22 12.09 12.05
2.57% 3.49% 3.12% 2.91% 3.95% 4.27%

PCK_SOI 12.2 12.16 12.23 12.18 12.18 12.1
3.11% 3.39% 2.87% 3.23% 3.23% 3.87%

SVR_SOI 12.26 12.2 12.32 12.25 12.13 12.1
2.62% 3.07% 2.14% 2.71% 3.65% 4.00%

4.2. Dynamic parameter identification of a plate

4.2.1. Model and experiment setup
The cantilever aluminum plate shown in Fig. 3 is the second verifi-

cation example for dynamic parameter identification. The AL6061-T6
aluminum alloy flat plate has an elastic modulus of 710 MPa, a mass
density of 2700 kg/m3, and the dimensions of 600 × 400 × 3 mm3.
The plate is clamped at one end with a clamped depth of 100 mm by
a steel anchor beam (See Fig. 3(a)), leading to a cantilever plate of
500 × 400 × 3 mm3.

As shown in Fig. 3(a), a piezoelectric lead zirconate-titanate (PZT)
actuator with the dimension of 50 × 50 × 1 mm3 is surface-bonded at
the plate width center near the clamped plate base. It is used to excite
the plate using a sweep sine excitation ranging from 100 to 2000 Hz
by Agilent® 33250 A wave signal generator. To obtain a detectable
excitation and response, the Pintek® HA-405 high voltage amplifier is
connected with the excitation circuit before the swept-frequency signal
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Table 2
Material properties for the cantilever aluminum plate.

Parameters Symbol Unit Model Quantity

Elastic modulus 𝐸 MPa Lognormal 𝐿𝑁 (710, 71)
Mass density 𝜌 kg/m3 Lognormal 𝐿𝑁 (2700, 270)
Poisson’s ratio 𝜈 – – 0.3

Fig. 4. Frequency response function of cantilever aluminum plate based on hammer
test and sweep frequency test.

is transmitted to the PZT actuator, and the voltage amplitude is 200
Vpp [79]. Due to the incomparable advantage of the Scanning Laser
Doppler Vibrometer (SLDV) in collecting the dynamic response of the
structure, the plate vibration response is excited by hammering and
frequency sweeping and then measured using the Polytec® PSV-400
SLDV. The natural frequency time-domain signal acquisition process of
the cantilever plate is shown in Fig. 3(b), and the experimental setup
for modal analysis of a cantilever plate is illustrated in Fig. 3(c).

4.2.2. Construction of prior distribution space
In this benchmark case, it is assumed that the dynamic elastic mod-

ulus and mass density of the cantilever aluminum plate are unknown
input parameters, and its material properties are shown in Table 2. LHS-
based random sampling is used to construct the dynamic parameter
prior distribution space. The finite element model of the cantilever
plate is developed using shell elements, and a subset of the computed
natural frequencies of the structure is extracted by modal analysis as
QoIs. The numerical calculation environment in this study is to that
explained in Section 4.1.

4.2.3. Comparison and remarks
The vibration time-domain signal of the cantilever plate is acquired

by two experimental modal analysis (EMA) methods: the hammer-
ing method and sweep frequency method and the frequency response
function (FRF) is obtained based on the FFT method. According to
Fig. 4, there is an acceptable consistency between the two methods,
and both can identify the frequencies with peak amplitude (e.g., 10 Hz,
60 Hz, 115 Hz, 201 Hz, 293 Hz, . . . ). The first ten peak frequencies are
extracted and used as the measured QoIs.

A total of 𝑁𝑠𝑖𝑚 = 120 samples are drawn using the LHS method,
and ten sets of calculated natural frequencies corresponding to the
measured values are computed based on probabilistic finite element
analysis. Subsequently, five batches with different 𝑁𝐷𝑂𝐸 sizes (i.e., 15,
25, 50, 75, and 100) and a fixed 𝑁𝑣𝑎𝑙 = 20 are used to build the
surrogate models. The resulted 𝐸𝑟𝑟𝐿𝑂𝑂 is shown in Fig. 5 with the
following major observations:

Fig. 5(a) evaluates the surrogate models for varying numbers of
𝑁𝐷𝑂𝐸 and three QoIs corresponding to the first three natural frequen-
cies. The error term 𝐸𝑟𝑟 of the SVR model decreases by increasing
8

𝐿𝑂𝑂
Fig. 5. Quantification of 𝐸𝑟𝑟𝐿𝑂𝑂 in cantilever plate based on different surrogate
models.

Table 3
Parameter identification results for cantilever plate.

Parameters Unit PCE_SOI Kriging_SOI PCK_SOI SVR_SOI

𝐸 MPa 708.05 708.95 703.33 697.32
𝜌 Kg/m3 2725.13 2728.5 2707.59 2682.34

the size of 𝑁𝐷𝑂𝐸 . It yields to a reliable accuracy for 𝑁𝐷𝑂𝐸 ≥ 50. How-
ever, the other three surrogate models always achieve high accuracy
regardless of 𝑁𝐷𝑂𝐸 size. PCK and PCE illustrate the best performance.

Fig. 5(b) compares all first ten frequencies for two 𝑁𝐷𝑂𝐸 of 25
and 50. Comparing four surrogate models, again, SVR is the worst
model, while PCK and PCE are the best ones. For all four surrogate
models, increasing the 𝑁𝐷𝑂𝐸 from 25 to 50 decreases the 𝐸𝑟𝑟𝐿𝑂𝑂 error
considerably. Comparing the results of different frequencies reveals
three different behaviors: using the Kriging model, the 𝐸𝑟𝑟𝐿𝑂𝑂 error
is nearly constant along with the frequency number. PCK and PCE
have some fluctuations, but the error is generally reduced by increasing
the frequency number. However, using the SVR surrogate model, the
𝐸𝑟𝑟𝐿𝑂𝑂 error increases by an increase in frequency number. Indeed,
the accuracy of the SVR model with 𝑁𝐷𝑂𝐸 = 25 for the first three
frequencies is completely different from the other seven.

Hereafter, four surrogate models with 𝑁𝐷𝑂𝐸 = 50 are used to
combine with Bayesian inference to identify the structural unknown
input parameters. The results of dynamic parameter identification are
shown in Table 3. Subsequently, by comparing the identified values of
the unknown input parameters with the given calibration values, in this
case, See Fig. 6(a), one can observe the inversion accuracy of the SASOI
algorithm, which is very high.

In addition, Fig. 6 illustrates the results of surrogate models using
two metrics. By comparing the frequency curve composed of the first
160 calculated natural frequencies of the cantilever plate, it is clear
that the priori and posteriori frequency curves (i.e., before and after
the parameter identification) are identical. This plot also shows the
measured natural frequency values distributed on the curve. Detailed
comparison of measured values and each of four surrogate models
for all ten frequencies are summarized in A.9. This example verifies
the accuracy of the SASOI algorithm for structural dynamic parameter
identification.
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Fig. 6. Comparison of accuracy of SASOI algorithms based on various surrogate models; 𝑁𝐷𝑂𝐸 = 50 and 𝑁𝑣𝑎𝑙 = 20.
5. Application of SASOI in dam engineering

So far, the proposed SASOI algorithm has been verified for both
the static and dynamic parameter identification problems using simple
structural models. In this section, the same algorithm is applied to two
examples of concrete arch dams. The first one is to identify the static
parameters in an arch dam with measure data, while the second one
explores the dynamic characteristics using the small-scale experimental
program.

5.1. Static parameter identification of Dayakou Dam

5.1.1. Engineering background
Dayakou Dam is a 95 m high double curvature arch dam, See

Fig. 7(a). The width of the dam at the crest and the bottom are
5.0 m and 22.0 m, respectively. The thickness-to-height ratio of the
crown cantilever is 0.232. There are five sections in the dam with four
transverse joints arranged with a spacing of about 60 m. Three overflow
surface holes are placed in the middle of the dam crest, with a weir
crest elevation of 643.5 m (the bottom elevation is 558 m), and the net
width of each hole is 10 m. The dam was completed in November 2015
and began to store water in February 2017.

A high-fidelity finite element model is developed for the dam and
its surrendering foundation with as many details as possible. The finite
element model is based on hexahedron and tetrahedron isoparametric
elements in ANSYS, as shown in Fig. 7(b). The foundation model
is extended 1.5 and 2.5 times the dam height in the upstream and
downstream directions. It is also extended twice the dam height to the
left, right, and bottom.

Fig. 7(b) also illustrates six material zones in the arch dam model,
while their basic parameters are reported in Table 4. The position of the
measurement points to monitor the arch dam deformation is shown in
Fig. 7(c). The sensors on the positive vertical line are arranged to be
measured at points 1 and 2, and the sensor on the inverted vertical
line is arranged to be recorded at point 3. By analyzing the absolute
displacement values of three recorded data on the A1 measurement line
in the middle of the dam, the measured displacement along the river,
𝑈𝑦, can be obtained.

This example aims to identify the static parameters of the dam
subjected only to water pressure after the dam construction. Therefore,
the influence of seepage on the deformation is not significant. The
initial reservoir water level (at the time of storage initiation) was
570 m. Then, it was increased to the normal water level of 648 m in
July 2017. By processing a large amount of water and air temperature
data during the impounding period, the displacement monitoring data
along the river on June 15 and July 15, 2017, are selected as the
measured displacement. The corresponding upstream reservoir water
levels are 647.3 and 648.0 m, respectively, while the downstream water
level is 571 m. Using this information, the hydrostatic pressure on the
dam is calculated. One should note that the temperature difference
9

Fig. 7. Description of Dayakou arch dam example.

Table 4
Basic parameters for Dayakou arch dam high-fidelity finite element model.

Zone Number
of elements

Density
[kg∕m3]

Elastic
modulus
[GPa]

Poisson’s
ratio [−]

Coefficient
of thermal
expansion [1∕◦C]

1 47,788 2400 20 0.19 7.0 × 10−6

2 2304 2400 20 0.19 7.0 × 10−6

3 4040 2400 16 0.21 7.0 × 10−6

4 129,569 – 12 0.22 –
5 22,160 – 6 0.26 –
6 4983 – 5 0.3 –

between the inside and outside of the concrete dam during the construc-
tion phase will significantly impact the stress distribution. The applied
loads are the dam self-weight, hydrostatic pressure (from upstream and
downstream reservoirs), and thermal load.
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Table 5
Material properties for Dayakou arch dam prior distribution space.

Parameter Symbol Unit Model Quantity

Zone 1; Elastic Modulus 𝐸1 GPa Normal 𝑁 (20, 2)
Zone 1; Coeff. Thermal Exp. 𝛼1 1/◦C Normal 𝑁 (7.0 × 10−6, 0.70 × 10−6)
Zone 2; Elastic Modulus 𝐸2 GPa Normal 𝑁 (20, 2)
Zone 2; Coeff. Thermal Exp. 𝛼2 1/◦C Normal 𝑁 (7.0 × 10−6, 0.70 × 10−6)
Zone 3; Elastic Modulus 𝐸3 GPa Normal 𝑁 (20, 2)
Zone 3; Coeff. Thermal Exp. 𝛼3 1/◦C Normal 𝑁 (7.0 × 10−6, 0.70 × 10−6)
Zone 4; Elastic Modulus 𝐸4 GPa Normal 𝑁 (12, 1.2)
Zone 5; Elastic Modulus 𝐸5 GPa Normal 𝑁 (6, 0.6)
Zone 6; Elastic Modulus 𝐸6 GPa Normal 𝑁 (5, 0.5)
Table 6
Parameter identification results for Dayakou Dam.

Parameter Unit PCE_SOI Kriging_SOI PCK_SOI SVR_SOI BO

𝐸1 GPa 26.38 24.853 22.002 25.371 22.711
𝛼1 1/◦C 6.062 × 10−6 5.740 × 10−6 7.096 × 10−6 5.653 × 10−6 6.379 × 10−6

𝐸2 GPa 22.077 16.703 23.619 18.254 22.406
𝛼2 1/◦C 2.764 × 10−6 6.988 × 10−6 6.710 × 10−6 6.652 × 10−6 5.985 × 10−6

𝐸3 GPa 21.153 17.926 18.102 19.301 18.219
𝛼3 1/◦C 7.867 × 10−6 6.382 × 10−6 7.258 × 10−6 6.309 × 10−6 6.618 × 10−6

𝐸4 GPa 5.086 7.181 3.734 5.913 10.259
𝐸5 GPa 4.814 5.061 4.125 5.541 5.192
𝐸6 GPa 4.983 5.091 6.576 5.11 4.27
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Fig. 8. Quantification of 𝐸𝑟𝑟𝐿𝑂𝑂 in Dayakou Dam example based on different surrogate
models; Note: first three QoIs correspond to 2017/6/15 and other three correspond to
2017/7/15.

5.1.2. Construction of static parameter prior distribution space

In this example, the elastic modulus and coefficient of thermal
expansion for the concrete and rock are assumed to be unknown input
parameters and follow a normal distributional model. The mean value
of the actual survey is used as the mean of priori distribution, and
all other material parameters are kept constant in the finite element
model. The material properties for each partition in this finite element
model are shown in Table 5. The LHS-based method is used to draw
the samples from unknown input parameters and perform probabilistic
finite element simulations. The calculated displacement along the river
at the target points is extracted as QoI to be used in the surrogate
models, and the numerical calculation environment is the same as in
Section 4.1.
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5.1.3. Comparison and discussion
The SASOI algorithm is applied to identify the unknown input

parameters in the dam. The first step towards SASOI implementation
is to build a reliable surrogate model to be replaced with the original
finite element model. Therefore, five groups of 𝑁𝐷𝑂𝐸 with different
izes (i.e., 10, 20, 30, 40, and 50) are used to construct the surrogate
odels, and their 𝐸𝑟𝑟𝐿𝑂𝑂 is shown in Fig. 8. Six QoIs are discussed

n this example, in which QoIs 1 to 3 are calculated displacement on
017/6/15 along the river corresponding to three target locations. In
ddition, QoIs 4 to 6 present similar data calculated on 2017/7/15 (one
onth later). Technically, this operation can be expanded to other time

ntervals, which this paper ignores. The following observations can be
rawn:

• For the given 𝑁𝐷𝑂𝐸 , PCE and PCK models always have high
accuracy, with error 𝐸𝑟𝑟𝐿𝑂𝑂 varying from 1e−4 to 1e−2.

• The error term 𝐸𝑟𝑟𝐿𝑂𝑂 for the Kriging model decreases by in-
creasing the size of 𝑁𝐷𝑂𝐸 , and the acceptable accuracy is reached
when 𝑁𝐷𝑂𝐸 is greater than 20. For one case (i.e., QoI 6), the
accuracy of the Kriging model is worse than SVR for 𝑁𝐷𝑂𝐸 = 10.

• The error term 𝐸𝑟𝑟𝐿𝑂𝑂 for the SVR surrogate model decreases first
and then increases with the optimal 𝑁𝐷𝑂𝐸 value of about 30–
40. This can be attributed to the inadaptability of the SVR model
to small data sets. Overall, the accuracy of the SVR model never
reaches below the required threshold (i.e., 0.05). So, this method
should be used with caution for complex dam models.

Based on the above discussion, we used the surrogate models based
n 𝑁𝐷𝑂𝐸 = 30 and 𝑁𝑣𝑎𝑙 = 20 to build Bayesian inference of uncer-
ain parameters. We will also compare the proposed SASOI algorithm
ith the classical inversion algorithm (based on iterative optimization)

n terms of efficiency and accuracy. The Bayesian optimization (BO)
lgorithm is a step-wise iterative algorithm based on the Bayesian
osterior distribution theory to find the global minima in the objective
unction. It does not require as much random search as the random
roup algorithm and has good robustness and fast convergence speed.
herefore, the BO algorithm is chosen for iterative optimization in this
ection and is implemented by real-time joint simulation of MATLAB
nd ANSYS. Two error metrics (i.e., MAPE and RMSE) are used to
valuate the accuracy of these inversion algorithms. Detailed results
or different target points and surrogate methods are summarized in
able A.10. The results of parameter identification are summarized in
able 6, while the model accuracy is discussed in Fig. 9(a).
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Fig. 9. Comparison of accuracy and efficiency between SASOI and BO-based inversion
algorithms for Dayakou Dam.

Different error validation metrics for the same method may have
inconsistent results. This necessitates using more than one metric to
confirm the reliability of the results. PCE_SOI is the best model us-
ing both metrics. However, the PCK_SOI algorithm holds the second
rank based on MAPE, while it has the lowest accuracy according to
RMSE. The BO-based conventional inversion algorithm has mediocre
performance among the five inversion methods. According to MAPE,
the SASOI algorithms’ accuracy is better than the traditional inversion
algorithm, i.e., BO. However, in terms of RMSE, the BO algorithm
competes with Kriging_SOI, PCK_SOI, and SVR_SOI. To ensure the
accuracy of surrogate models compared to the conventional BO, it is
recommended to use multiple surrogate techniques, and choose the one
with the lowest error metrics.

Fig. 9(b) further discusses the inversion efficiency of both SASOI and
BO algorithms. The total time consumed by the SASOI algorithm con-
sists of two parts: (1) the computation time to construct the surrogate
model data set and (2) the computation time for Bayesian inference
of unknown input parameters. Based on the numerical environment
described above, the calculation time of the first part to build four
surrogate models is about 0.866 hr. However, the required time to
make the Bayesian inference varies among the surrogate models:

• In terms of Bayesian inference time, the PCE_SOI algorithm has
the best performance among the four surrogate models. Its
Bayesian inference time is about one-third of PCK_SOI. Although
the Bayesian inference time using SVR_SOI is close to PCE_SOI,
the 𝐸𝑟𝑟𝐿𝑂𝑂 of SVR is much higher than PCE.

• The total time of the different SASOI algorithms does not differ
much since the computation time of the first part is identical in
all of them and much larger than the second part. However, the
total time of the traditional inversion algorithm is 27.66 h, almost
30 times that of the SASOI algorithm.

In summary, the SASOI algorithm provides similar results to the
traditional BO-based inversion algorithm in terms of accuracy; how-
ever, it is much faster. It is found that the SASOI algorithm solves the
contradiction that the traditional inversion algorithm cannot balance
computational accuracy and efficiency. In addition, the comprehensive
analysis shows that the PCE_SOI algorithm is the best choice among the
five methods in terms of accuracy and efficiency.

5.2. Dynamic parameter identification of a small-scaled dam

5.2.1. Model and experimental setup
This example aims to explore the capability of the SASOI algo-

rithm to be used for dynamic parameter identification of small-scaled
laboratory models. Therefore, a simplified scaled model of an ultra-
high arch dam is built. The height of the scaled arch dam is 1.35 m,
while the prototype dam is a 270 m high dam (i.e., the scale is
1:200), See Fig. 10(a). This model includes the dam and the foundation.
The foundation is completely poured with commercial C30 concrete;
however, the material of the dam body is modulated according to the
principle of material ratio in the scale experiment.
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Table 7
Material properties for the small-scaled experimental arch dam.

Parameter Symbol Unit Model Quantity

Dam modulus of elasticity 𝐸𝑐 GPa Normal 𝑁 (1.5, 0.15)
Dam mass density 𝜌𝑐 kg/m3 Normal 𝑁 (2200, 220)
Dam Poisson’s ratio 𝜈𝑐 – – 0.22
Foundation modulus of elasticity 𝐸𝑓 GPa Normal 𝑁 (30, 3)
Foundation mass density 𝜌𝑓 kg/m3 Normal 𝑁 (2400, 240)
Foundation Poisson’s ratio 𝜈𝑓 – – 0.19

Table 8
Parameter identification results for small-scaled experimental dam.

Parameter Unit PCE_SOI Kriging_SOI PCK_SOI SVR_SOI

𝐸𝑐 GPa 1.43 1.39 1.36 1.34
𝜌𝑐 kg/m3 2365.36 2333.50 2239.07 2109.60
𝐸𝑓 GPa 27.05 28.04 26.87 27.01
𝜌𝑓 kg/m3 2446.54 2282.47 2438.14 2437.29

This figure also shows the required instrumentation for experimen-
tal modal analysis (EMA) of the scaled arch dam. There are eight
1A202E® low-frequency piezoelectric acceleration sensors on the dam
body, of which seven are arranged at equal intervals on the crest
and one at the upstream dam face. The vibration response of the
model is obtained by hammer test, and the time-domain signal of the
model system response is collected by DH5972N® online monitoring
and analysis system.

5.2.2. Construction of dynamic parameter prior distribution space
Considering that the dynamic elastic modulus and mass density

of the dam body and the foundation are unknown input parameters
obeying a normal distribution, the measured mean values of the sam-
pled specimen during concrete pouring were used as the average of
the priori distribution. These material properties are listed in Table 7.
Fig. 10(b) illustrates the finite element model of the simplified small-
scaled arch dam. The finite element model of the small-scaled arch
dam is constructed using the hexahedron and tetrahedron isoparametric
elements. The QoIs are extracted in the form of natural frequencies
under computational modal analysis, and the numerical calculation
environment in this study is the same as in Section 4.1.

5.2.3. Comparison and remarks
The frequency response function of the model is obtained based on

the FFT method, as shown in Fig. 11. This section extracts the first eight
peak frequencies as the measured natural frequencies. These QoIs are
tabulated in Table A.11.

The LHS method is used to sample the unknown input parameters
𝑁𝑠𝑖𝑚 = 100 times, and then the initial simulation data set is generated
based on the same approach as discussed in Section 4.2. The following
five batches with different sizes of 𝑁𝐷𝑂𝐸 (i.e., 10, 20, 40, 60, and
80) and 𝑁𝑣𝑎𝑙 = 20 are used to construct the surrogate models. The
𝐸𝑟𝑟𝐿𝑂𝑂 error is shown in Fig. 12. According to this figure, for the given
𝑁𝐷𝑂𝐸 , PCE and PCK surrogate models always have higher accuracy
compared to the other two models. This is, indeed, consistent with the
observations of the previous three examples. The 𝐸𝑟𝑟𝐿𝑂𝑂 of the Kriging
model decreases with the increase of 𝑁𝐷𝑂𝐸 size. The PCE and PCK
models even show better performance for lower frequencies, while the
performance of the Kriging model is more or less constant with some
fluctuations. The performance of the SVR model is noisy, and it seems
that the error term is increased for higher frequency numbers. When
𝑁𝐷𝑂𝐸 = 60 or higher, 𝐸𝑟𝑟𝐿𝑂𝑂 of the SVR model is acceptable for all
requencies except the last two ones.

Considering that the dynamic characteristics of the structures are
ainly governed by the low-order modes [80], four surrogate models
ith 𝑁𝐷𝑂𝐸 = 60 are selected to be the pilot model to accelerate the

ayesian inference of the unknown input parameters. The detailed
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Fig. 10. Description of the small-scaled arch dam.
Fig. 11. Frequency response function of a small-scaled experimental arch dam by
hammer test.

results for parameter identification are shown in Table 8. In addition,
to explore the influence of different surrogate models on dynamic
parameter identification results, this section selects 𝑁𝐷𝑂𝐸 of 10 and
80 to be compared with 60. Results are shown in Figs. 13(a) and 13(b)
with the following observations:

• According to MAPE and RSME, when 𝑁𝐷𝑂𝐸 = 10, the accuracy
of the SVR_SOI algorithm is significantly lower than others.

• When 𝑁𝐷𝑂𝐸 = 60 or 80, the accuracy of the four SASOI algo-
rithms is very similar. MAPE varies in [0.025, 0.028], while RSME
falls in Alves and Hall [7],Tsitsiklis et al. [9]. Although the values
for RSME seem to be high, they follow the same pattern for the
true and predicted values, as reported in Table A.11.

• Similar to the previous observation, it seems that the accuracy of
the SASOI algorithms does not correlate with 𝑁𝐷𝑂𝐸 size (i.e., the
accuracy of its corresponding surrogate model).

Finally, Fig. 14 illustrates the results of the Bayesian inversion for
the prior and posterior samples based on PCE_SOI and 𝑁𝐷𝑂𝐸 = 60, as
well as the frequency responses. Comparing the frequency curves for
the first 30 natural frequencies, one can observe that the measured
values are close to the posterior distribution. Therefore, the SASOI
algorithm has good inversion performance.

6. Conclusions

To timely identify the abnormalities in dams under the changing en-
vironment, the inversion analysis from measured data can play a crucial
role. However, this procedure is mainly based on deterministic analysis
combined with engineering judgment. The computational burden of
numerical analysis is the major obstacle in the rapid identification of
dam parameters. In this study, the SASOI algorithm was presented as an
effective technique for unknown parameter identification of dams. Four
benchmark problems with different complexity were studied which
cover both the static and dynamic cases, as well as numerical, experi-
mental, and field measurements: (1) static parameter identification for
12
Fig. 12. Quantification of 𝐸𝑟𝑟𝐿𝑂𝑂 based on different surrogate models for small-scaled
arch dam.

Fig. 13. Inversion accuracy evaluation based on different methods for small-scaled
arch dam.

simply supported beam, (2) static parameter identification for Dayakou
arch dam, (3) dynamic parameter identification for cantilever alu-
minum plate, and (4) dynamic parameter identification for small-scale
arch dam experimental model.

Four types of surrogate models were used to analyze the relatively
big database of various benchmark problems, and their capability in
response prediction was evaluated using the leave-one-out error met-
ric. The surrogate models were combined with accelerated Bayesian
inference models, and the accuracy of the proposed SASOI algorithm
was also evaluated using root mean squares error and mean absolute
percentage error. The general conclusions are summarized as follows:
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Fig. 14. Results of the Bayesian inversion on the prior and posterior sample with PCE_SOI and 𝑁𝐷𝑂𝐸 = 60 for the small-scaled arch dam.
Table A.9
Comparison of measured and predicted values for cantilever plate.

Mode Measured
frequency [Hz]

PCE_SOI Kriging_SOI PCK_SOI SVR_BOI

1 10 10.3 10.3 10.3 10.3
2 60 58.54 58.54 58.53 58.55
3 115 113.91 113.91 113.89 113.93
4 201 201.11 201.11 201.08 201.16
5 293 289.32 289.31 289.28 289.31
6 326 325.93 325.92 325.88 325.92
7 388 386.86 386.85 386.8 386.74
8 504 503.34 503.33 503.26 503.32
9 561 561.64 561.62 561.55 561.56
10 581 583.87 583.85 583.78 583.94

MAPE 0.875% 0.875% 0.875% 0.88%
RMSE 1.654 1.653 1.654 1.672

• In terms of the accuracy of the surrogate model: PCE and PCK
models have higher performance. Even for a small experimental
design data set, they always have high accuracy. The performance
of the Kriging model is unstable under a small data set, but it
improves by increasing the number of experimental points used
to generate the surrogate model. As for the SVR model, which is
not a suitable meta-model for small data sets with poor accuracy,
its performance is inferior to that of the four surrogate models if
only small data sets are used.

• In terms of the accuracy of the SASOI algorithm: Although the
accuracy of four meta-models is similar and meets the require-
ments of engineering error control, the overall performance of the
PCE_SOI is better. In addition, dynamic parameter identification
has higher accuracy than the static one.

• The dam engineering applications showed that the total calcu-
lation time of the SASOI algorithm is similar for all surrogate
models. However, compared with the classical inversion algo-
rithm based on iterative optimization, the calculation efficiency
of the proposed method is improved by about 27 times without
affecting the accuracy.

• There is no correlation between the accuracy of the surrogate
model and the accuracy of the SASOI algorithm.

• In general, it is recommended to use the adaptive sampling [81]
to achieve the desired level of accuracy with the minimum pos-
sible sampling. Otherwise, the recommendation in this paper can
be used to set up the size of DOE for dam engineering problems.
Other generic recommendations can be found in Diaz et al. [82],
Lin et al. [83] for the DOE size, such as 𝑁×(𝑁+1)

2 or 10𝑁 , where
𝑁 is the number of input parameters.
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In summary, the SASOI algorithm presented in this study makes up
for the shortcomings of the traditional inversion method in terms of
computational accuracy and efficiency. It is an appropriate algorithm
for the identification of the dynamic parameters in structural systems
with random materials properties. The proposed algorithm can be used
for any other infrastructure system subjected to static and dynamic
loading. There are a few limitations and drawbacks to this algorithm:

• Construction of the surrogate model requires running the initial
computational model several times. So, the efficiency of the entire
algorithm depends on initial probabilistic simulation, and sub-
sequent surrogate and optimization (i.e., SASOI). If the initial
simulations are very heavy to compute, the efficiency of the entire
algorithm is reduced.

• Due to the classical ‘‘curse of dimensionality’’, the predictive
performance of surrogate models in high-dimensional parameter
space is greatly reduced.

• The number of the initial design of experiments is typically un-
known. This may affect the performance of the surrogate model
unless an adaptive sampling method is adapted [81].

• The developed surrogate models are not interpretable (i.e., they
are not physics-informed).

• While the proposed algorithm provides accuracy using several
error metrics, it does not provide the confidence level associated
with each decision.

Future studies can be focused on the following cases:

• Extend the proposed SASOI algorithm for correlated multi-target
problems [84]. For example, SASOI can be used to forecast the
seasonal dam deformation under the hydrostatic and thermal
loading where the displacement is recorded and analyzed in
several locations simultaneously.

• Extend the proposed SASOI algorithm for seismic analysis of dams
in which the time history of the response parameter needs to be
estimated [85].

• Extend the proposed SASOI algorithm for time-varying mod-
els [21] such as aging and deterioration of dams.

• While the current SASOI algorithm covers only the classical un-
certainty quantification, it can be extended to model the hetero-
geneity in material properties in the context of the random fields
theory [86].

• The surrogate models used in this paper can be replaced by
multiple machine learning or deep learning methods to examine
the accuracy of the meta-models.
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Table A.10
Comparison of the measured value and predicted value for Dayakou Dam.

Working condition Measured point Uy [mm] PCE_SOI Kriging_SOI PCK_SOI SVR_SOI BO

2017/6/15
1 7.44 7.47 8.23 7.63 7.94 7.55
2 3.82 4.01 4.11 3.88 4.06 3.7
3 1.68 1.64 1.4 1.69 1.46 1.15

2017/7/15
1 8.22 8.14 8.93 8.51 8.53 8.5
2 4.36 4.09 4.27 4.07 4.23 4.04
3 2.04 1.83 1.32 1.53 1.35 1.27

MAPE 4.17% 13.48% 6.65% 11.11% 14.11%
RSME 0.164 0.549 0.68 0.397 0.424

Bayesian inference time [s] 179 390 672 216 –
Total time [h] 0.883 0.942 1.02 0.893 27.664
Table A.11
Comparison of the measured value and predicted value for small-scaled arch dam.

Mode Measured
frequency [Hz]

PCE_SOI Kriging_SOI PCK_SOI SVR_BOI

1 137 139.54 138.26 139.55 138.61
2 157 143.22 141.88 143.23 142.17
3 304 313.94 311.02 313.97 311.76
4 379 374.64 371.39 374.76 372.01
5 433 427.94 423.97 427.97 424.62
6 448 453.78 452.07 456.55 454.13
7 480 490.33 503.33 492.38 492.99
8 620 618.77 615.51 618.36 616.14

MAPE 2.48% 2.55% 2.62% 2.71%
RMSE 6.87 8.14 8.42 8.83
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